The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

CHEBI:29748     (3R,4R)-3-(1- carboxylatoethenoxy)-4...

Synonyms: AC1NUT2O, 55508-12-8
This record was replaced with 12039.
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of chorismic acid


High impact information on chorismic acid

  • Here we show, by cloning and characterizing an Arabidopsis defence-related gene (SID2) defined by mutation, that SA is synthesized from chorismate by means of ICS, and that SA made by this pathway is required for LAR and SAR responses [6].
  • We have transformed tobacco with two bacterial genes coding for enzymes that convert chorismate into SA by a two-step process [7].
  • In the conclusion, CHI's remarkable efficiency of stabilizing the TS and its relatively poor ability in organizing the ground state is compared with chorismate mutase whose catalytic prowess, when compared with water, originates predominantly from the enhanced NAC population at the active site [8].
  • The mechanism of catalysis of the chorismate to prephenate reaction by the Escherichia coli mutase enzyme [1].
  • Expression of an allosterically unregulated, constitutively activated chorismate mutase encoded by the ARO7(T226I) (ARO7(c)) allele depleted the chorismate pool [9].

Chemical compound and disease context of chorismic acid


Biological context of chorismic acid


Anatomical context of chorismic acid

  • Targeting of SAS to the cytosol caused a slight increase in free SA and a significant threefold increase in conjugated SA, probably reflecting limited chorismate availability in this compartment [18].
  • The substrates for these enzymes are chorismate (a shikimate pathway intermediate that is synthesized in plastids) and 4-hydroxycinnamoyl-CoA (a cytosolic phenylpropanoid intermediate) [19].

Associations of chorismic acid with other chemical compounds


Gene context of chorismic acid


Analytical, diagnostic and therapeutic context of chorismic acid


  1. The mechanism of catalysis of the chorismate to prephenate reaction by the Escherichia coli mutase enzyme. Hur, S., Bruice, T.C. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  2. Crystal structures of the monofunctional chorismate mutase from Bacillus subtilis and its complex with a transition state analog. Chook, Y.M., Ke, H., Lipscomb, W.N. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  3. Isochorismate synthase (PchA), the first and rate-limiting enzyme in salicylate biosynthesis of Pseudomonas aeruginosa. Gaille, C., Reimmann, C., Haas, D. J. Biol. Chem. (2003) [Pubmed]
  4. Purified recombinant hypothetical protein coded by open reading frame Rv1885c of Mycobacterium tuberculosis exhibits a monofunctional AroQ class of periplasmic chorismate mutase activity. Prakash, P., Aruna, B., Sardesai, A.A., Hasnain, S.E. J. Biol. Chem. (2005) [Pubmed]
  5. The phylogenetic origin of the bifunctional tyrosine-pathway protein in the enteric lineage of bacteria. Ahmad, S., Jensen, R.A. Mol. Biol. Evol. (1988) [Pubmed]
  6. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Wildermuth, M.C., Dewdney, J., Wu, G., Ausubel, F.M. Nature (2001) [Pubmed]
  7. Overproduction of salicylic acid in plants by bacterial transgenes enhances pathogen resistance. Verberne, M.C., Verpoorte, R., Bol, J.F., Mercado-Blanco, J., Linthorst, H.J. Nat. Biotechnol. (2000) [Pubmed]
  8. Transition state stabilization by general acid catalysis, water expulsion, and enzyme reorganization in Medicago savita chalcone isomerase. Hur, S., Newby, Z.E., Bruice, T.C. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  9. Coevolution of transcriptional and allosteric regulation at the chorismate metabolic branch point of Saccharomyces cerevisiae. Krappmann, S., Lipscomb, W.N., Braus, G.H. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  10. p-Aminobenzoate biosynthesis in Escherichia coli. Purification of aminodeoxychorismate lyase and cloning of pabC. Green, J.M., Nichols, B.P. J. Biol. Chem. (1991) [Pubmed]
  11. Purification and characterization of NADPH-dependent flavin reductase. An enzyme required for the activation of chorismate synthase in Bacillus subtilis. Hasan, N., Nester, E.W. J. Biol. Chem. (1978) [Pubmed]
  12. Genetic engineering of plant secondary metabolism. Accumulation of 4-hydroxybenzoate glucosides as a result of the expression of the bacterial ubiC gene in tobacco. Siebert, M., Sommer, S., Li, S.M., Wang, Z.X., Severin, K., Heide, L. Plant Physiol. (1996) [Pubmed]
  13. Escherichia coli chorismate synthase: a deuterium kinetic-isotope effect under single-turnover and steady-state conditions shows that a flavin intermediate forms before the C-(6proR)-H bond is cleaved. Bornemann, S., Balasubramanian, S., Coggins, J.R., Abell, C., Lowe, D.J., Thorneley, R.N. Biochem. J. (1995) [Pubmed]
  14. p-Aminobenzoate synthesis in Escherichia coli: mutational analysis of three conserved amino acid residues of the amidotransferase PabA. Roux, B., Walsh, C.T. Biochemistry (1993) [Pubmed]
  15. The crystal structure of anthranilate synthase from Sulfolobus solfataricus: functional implications. Knöchel, T., Ivens, A., Hester, G., Gonzalez, A., Bauerle, R., Wilmanns, M., Kirschner, K., Jansonius, J.N. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  16. Studies with flavin analogs provide evidence that a protonated reduced FMN is the substrate-induced transient intermediate in the reaction of Escherichia coli chorismate synthase. Macheroux, P., Bornemann, S., Ghisla, S., Thorneley, R.N. J. Biol. Chem. (1996) [Pubmed]
  17. Magnetic resonance and kinetic studies of the partial complex and Component I subunit forms of Salmonella typhimurium anthranilate synthase. Summerfield, A.E., Bauerle, R., Grisham, C.M. J. Biol. Chem. (1988) [Pubmed]
  18. Manipulation of salicylate content in Arabidopsis thaliana by the expression of an engineered bacterial salicylate synthase. Mauch, F., Mauch-Mani, B., Gaille, C., Kull, B., Haas, D., Reimmann, C. Plant J. (2001) [Pubmed]
  19. Initial evaluation of sugarcane as a production platform for p-hydroxybenzoic acid. McQualter, R.B., Chong, B.F., Meyer, K., van Dyk, D.E., O'shea, M.G., Walton, N.J., Viitanen, P.V., Brumbley, S.M. Plant Biotechnol. J. (2005) [Pubmed]
  20. Yeast chorismate mutase in the R state: simulations of the active site. Ma, J., Zheng, X., Schnappauf, G., Braus, G., Karplus, M., Lipscomb, W.N. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  21. Spectroscopic and kinetic characterization of the bifunctional chorismate synthase from Neurospora crassa: evidence for a common binding site for 5-enolpyruvylshikimate 3-phosphate and NADPH. Kitzing, K., Macheroux, P., Amrhein, N. J. Biol. Chem. (2001) [Pubmed]
  22. The in vitro conversion of chorismate to isochorismate catalyzed by the Escherichia coli entC gene product. Evidence that EntA does not contribute to isochorismate synthase activity. Tummuru, M.K., Brickman, T.J., McIntosh, M.A. J. Biol. Chem. (1989) [Pubmed]
  23. Properties of anthranilate synthetase component II from Pseudomonas putida. Goto, Y., Zalkin, H., Keim, P.S., Heinrikson, R.L. J. Biol. Chem. (1976) [Pubmed]
  24. Mechanistic insights into the isochorismate pyruvate lyase activity of the catalytically promiscuous PchB from combinatorial mutagenesis and selection. Künzler, D.E., Sasso, S., Gamper, M., Hilvert, D., Kast, P. J. Biol. Chem. (2005) [Pubmed]
  25. Molecular cloning, characterization and analysis of the regulation of the ARO2 gene, encoding chorismate synthase, of Saccharomyces cerevisiae. Jones, D.G., Reusser, U., Braus, G.H. Mol. Microbiol. (1991) [Pubmed]
  26. Metabolic engineering of the chloroplast genome using the Echerichia coli ubiC gene reveals that chorismate is a readily abundant plant precursor for p-hydroxybenzoic acid biosynthesis. Viitanen, P.V., Devine, A.L., Khan, M.S., Deuel, D.L., Van Dyk, D.E., Daniell, H. Plant Physiol. (2004) [Pubmed]
  27. Structure of Escherichia coli aminodeoxychorismate synthase: architectural conservation and diversity in chorismate-utilizing enzymes. Parsons, J.F., Jensen, P.Y., Pachikara, A.S., Howard, A.J., Eisenstein, E., Ladner, J.E. Biochemistry (2002) [Pubmed]
  28. Menaquinone (vitamin K2) biosynthesis: overexpression, purification, and characterization of a new isochorismate synthase from Escherichia coli. Daruwala, R., Bhattacharyya, D.K., Kwon, O., Meganathan, R. J. Bacteriol. (1997) [Pubmed]
  29. Biochemical and Structural Characterization of the Secreted Chorismate Mutase (Rv1885c) from Mycobacterium tuberculosis H37Rv: an *AroQ Enzyme Not Regulated by the Aromatic Amino Acids. Kim, S.K., Reddy, S.K., Nelson, B.C., Vasquez, G.B., Davis, A., Howard, A.J., Patterson, S., Gilliland, G.L., Ladner, J.E., Reddy, P.T. J. Bacteriol. (2006) [Pubmed]
  30. Use of site-directed mutagenesis to identify residues specific for each reaction catalyzed by chorismate mutase-prephenate dehydrogenase from Escherichia coli. Christendat, D., Saridakis, V.C., Turnbull, J.L. Biochemistry (1998) [Pubmed]
  31. A chorismate mutase from the soybean cyst nematode Heterodera glycines shows polymorphisms that correlate with virulence. Bekal, S., Niblack, T.L., Lambert, K.N. Mol. Plant Microbe Interact. (2003) [Pubmed]
  32. Crystallization and preliminary structural studies of a chorismate mutase catalytic antibody complexed with a transition state analog. Haynes, M.R., Stura, E.A., Hilvert, D., Wilson, I.A. Proteins (1994) [Pubmed]
  33. Salicylate biosynthesis: overexpression, purification, and characterization of Irp9, a bifunctional salicylate synthase from Yersinia enterocolitica. Kerbarh, O., Ciulli, A., Howard, N.I., Abell, C. J. Bacteriol. (2005) [Pubmed]
  34. Chorismate mutase isoenzymes from Sorghum bicolor: purification and properties. Singh, B.K., Connelly, J.A., Conn, E.E. Arch. Biochem. Biophys. (1985) [Pubmed]
WikiGenes - Universities