The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Pluripotent protective effects of carnosine, a naturally occurring dipeptide.

Carnosine is a naturally occurring dipeptide (beta-alanyl-L-histidine) found in brain, innervated tissues, and the lens at concentrations up to 20 mM in humans. In 1994 it was shown that carnosine could delay senescence of cultured human fibroblasts. Evidence will be presented to suggest that carnosine, in addition to antioxidant and oxygen free-radical scavenging activities, also reacts with deleterious aldehydes to protect susceptible macromolecules. Our studies show that, in vitro, carnosine inhibits nonenzymic glycosylation and cross-linking of proteins induced by reactive aldehydes (aldose and ketose sugars, certain triose glycolytic intermediates and malondialdehyde (MDA), a lipid peroxidation product). Additionally we show that carnosine inhibits formation of MDA-induced protein-associated advanced glycosylation end products (AGEs) and formation of DNA-protein cross-links induced by acetaldehyde and formaldehyde. At the cellular level 20 mM carnosine protected cultured human fibroblasts and lymphocytes, CHO cells, and cultured rat brain endothelial cells against the toxic effects of formaldehyde, acetaldehyde and MDA, and AGEs formed by a lysine/deoxyribose mixture. Interestingly, carnosine protected cultured rat brain endothelial cells against amyloid peptide toxicity. We propose that carnosine (which is remarkably nontoxic) or related structures should be explored for possible intervention in pathologies that involve deleterious aldehydes, for example, secondary diabetic complications, inflammatory phenomena, alcoholic liver disease, and possibly Alzheimer's disease.[1]

References

  1. Pluripotent protective effects of carnosine, a naturally occurring dipeptide. Hipkiss, A.R., Preston, J.E., Himsworth, D.T., Worthington, V.C., Keown, M., Michaelis, J., Lawrence, J., Mateen, A., Allende, L., Eagles, P.A., Abbott, N.J. Ann. N. Y. Acad. Sci. (1998) [Pubmed]
 
WikiGenes - Universities