The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Amylohexaose     (2R,3R,4S,5S,6R)-2- [(2R,3S,4R,5R,6R)-6...

Synonyms: Maltohexaose, AG-F-18626, M9153_SIGMA, AC1L97OB, M1024, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of C01936


High impact information on C01936

  • To elucidate the orientation, we performed point mutations at each side of the channel and analyzed the ion current fluctuation caused by an asymmetric maltohexaose addition [6].
  • The so developed approach has been tested with experimental data for a single maltoporin trimer being reconstituted in black lipid membranes when studied in the presence of maltohexaose as the substrate [7].
  • ESI tandem mass spectrometry of the ABDEAE-derivatized maltohexaose provides structural information at the low-picomole level [8].
  • A hybrid region between residues 34-76 is demonstrated to correlate with the alpha-amylases' substrate specificity, i.e. either hydrolysis or accumulation of maltohexaose [9].
  • Nucleotide sequence of the maltohexaose-producing amylase gene from an alkalophilic Bacillus sp. #707 and structural similarity to liquefying type alpha-amylases [10].

Biological context of C01936


Associations of C01936 with other chemical compounds


Gene context of C01936

  • The properties of the recombinant beta-amylase were almost the same as those of barley beta-amylase except for the pI and the Km values for maltohexaose and maltoheptaose.(ABSTRACT TRUNCATED AT 250 WORDS)[15]

Analytical, diagnostic and therapeutic context of C01936


  1. Molecular cloning, expression, and characterization of novel hemolytic lectins from the mushroom Laetiporus sulphureus, which show homology to bacterial toxins. Tateno, H., Goldstein, I.J. J. Biol. Chem. (2003) [Pubmed]
  2. The periplasmic cyclodextrin binding protein CymE from Klebsiella oxytoca and its role in maltodextrin and cyclodextrin transport. Pajatsch, M., Gerhart, M., Peist, R., Horlacher, R., Boos, W., Böck, A. J. Bacteriol. (1998) [Pubmed]
  3. Expression, crystallization and preliminary X-ray crystallographic studies of Klebsiella pneumoniae maltohexaose-producing alpha-amylase. Momma, M., Fujimoto, Z. Acta Crystallogr. D Biol. Crystallogr. (2004) [Pubmed]
  4. Structure of a complex of Thermoactinomyces vulgaris R-47 alpha-amylase 2 with maltohexaose demonstrates the important role of aromatic residues at the reducing end of the substrate binding cleft. Ohtaki, A., Mizuno, M., Yoshida, H., Tonozuka, T., Sakano, Y., Kamitori, S. Carbohydr. Res. (2006) [Pubmed]
  5. Purification and some properties of a novel maltohexaose-producing exo-amylase from Aerobacter aerogenes. Kainuma, K., Wako, K., Kobayashi, S., Nogami, A., Suzuki, S. Biochim. Biophys. Acta (1975) [Pubmed]
  6. Probing the orientation of reconstituted maltoporin channels at the single-protein level. Danelon, C., Brando, T., Winterhalter, M. J. Biol. Chem. (2003) [Pubmed]
  7. On translocation through a membrane channel via an internal binding site: kinetics and voltage dependence. Schwarz, G., Danelon, C., Winterhalter, M. Biophys. J. (2003) [Pubmed]
  8. Use of the derivatizing agent 4-aminobenzoic acid 2-(diethylamino)ethyl ester for high-sensitivity detection of oligosaccharides by electrospray ionization mass spectrometry. Yoshino, K., Takao, T., Murata, H., Shimonishi, Y. Anal. Chem. (1995) [Pubmed]
  9. Hybrid Bacillus amyloliquefaciens X Bacillus licheniformis alpha-amylases. Construction, properties and sequence determinants. Conrad, B., Hoang, V., Polley, A., Hofemeister, J. Eur. J. Biochem. (1995) [Pubmed]
  10. Nucleotide sequence of the maltohexaose-producing amylase gene from an alkalophilic Bacillus sp. #707 and structural similarity to liquefying type alpha-amylases. Tsukamoto, A., Kimura, K., Ishii, Y., Takano, T., Yamane, K. Biochem. Biophys. Res. Commun. (1988) [Pubmed]
  11. Cloning and sequencing of the maltohexaose-producing amylase gene of Klebsiella pneumoniae. Momma, M. Biosci. Biotechnol. Biochem. (2000) [Pubmed]
  12. An automated method for the quasi-continuous analysis of degradation and transfer products during the enzymatic hydrolysis of oligosaccharides. Schmid, G., Wandrey, C. Anal. Biochem. (1986) [Pubmed]
  13. Enzymatic preparation of maltohexaose, maltoheptaose, and maltooctaose by the preferential cyclomaltooligosaccharide (cyclodextrin) ring-opening reaction of Pyrococcus furiosus thermostable amylase. Yang, S.J., Lee, H.S., Kim, J.W., Lee, M.H., Auh, J.H., Lee, B.H., Park, K.H. Carbohydr. Res. (2006) [Pubmed]
  14. Effect of water as a diluent on the glass transition behaviour of malto-oligosaccharides, amylose and amylopectin. Orford, P.D., Parker, R., Ring, S.G., Smith, A.C. Int. J. Biol. Macromol. (1989) [Pubmed]
  15. Expression in Escherichia coli of cDNA encoding barley beta-amylase and properties of recombinant beta-amylase. Yoshigi, N., Okada, Y., Sahara, H., Koshino, S. Biosci. Biotechnol. Biochem. (1994) [Pubmed]
  16. Effects of cations and charge types on the metastable decay rates of oligosaccharides. Ngoka, L.C., Gal, J.F., Lebrilla, C.B. Anal. Chem. (1994) [Pubmed]
  17. Enzymatic preparation of radiolabeled linear maltodextrins and cyclodextrins of high specific activity from [14C] maltose using amylomaltase, cyclodextrin glucosyltransferase and cyclodextrinase. Pajatsch, M., Böck, A., Boos, W. Carbohydr. Res. (1998) [Pubmed]
WikiGenes - Universities