The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Azidopine     2-[(4-azidophenyl) carbonylamino]ethyl...

Synonyms: AC1LCUW1, CHEMBL1993397, NSC-617999, NSC617999, NCI60_005410, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Azidopine

 

High impact information on Azidopine

 

Biological context of Azidopine

  • Overall, PMF is anticipated to be a novel and highly potent second-generation flavonoid chemosensitizer because PMF has significant advantages of having a high therapeutic index, of being a non-transportable inhibitor, and of having a low possibility of drug interactions at the azidopine-binding site of Pgp [6].
  • Using three different cell lines exhibiting the MDR phenotype, we have studied the ability of eight different modulators to restore doxorubicin intracellular accumulation and to inhibit azidopine binding to membrane extracts [7].
 

Anatomical context of Azidopine

 

Associations of Azidopine with other chemical compounds

  • In contrast, high concentrations of the denaturing agent urea or the zwitterionic detergent 1-[(3-cholamidopropyl)dimethylamino]-1-propanesulfonate did not inhibit azidopine photolabeling to P-glycoprotein [10].
  • Structure comparison of the compounds indicates that the highly hydrophobic estradiol derivative RU49953, which does not interact with any hormone receptor, inhibits P-glycoprotein-mediated drug efflux very efficiently, as monitored by flow cytometry, and prevents drug site photoaffinity labeling by azidopine [11].
  • Basal-to-apical transports of azidopine and diltiazem across the LLC-GA5-COL300 monolayer were increased and apical-to-basal transports were decreased compared to those across the LLC-PK1 monolayer, indicating that P-glycoprotein transports azidopine and diltiazem [12].
  • Aureobasidin A probably interacts directly with Pgps, because it overcame multidrug resistance of human cells and inhibited azidopine photoaffinity labeling of MDR1/Pgp in human cell membranes [13].
  • K02 significantly inhibited the photoaffinity labeling of P-gp with azidopine and LU-49888, a photoaffinity analogue of verapamil [14].
 

Gene context of Azidopine

  • PTG at 200 microg/mL or more completely inhibited the azidopine photolabeling of Pgp [15].
  • Labeling experiments with the photoactivatable P-gp ligands iodoarylazidoprazosin and azidopine indicate a strong reduction in binding of these photoactivatable probes to the mutant P-gps (1F, 3F) as compared to their wild-type counterparts (1S,3S) [16].
  • The more lipophilic compound, BBR 2378, and the photolabeled analogs of BBR 2778 and DEH inhibited P-gp labeling by azidopine better than did the more hydrophilic parental compounds [17].
  • It is shown here that dexniguldipine-HCl causes a dose-dependent reduction of the labeling of the P-glycoprotein by azidopine, indicating a competition of dexniguldipine-HCl with the photoaffinity label for the multidrug resistance gene 1 (MDR-1) product [18].
  • Azidopine photoaffinity labeling of multidrug resistance-associated glycoproteins [19].
 

Analytical, diagnostic and therapeutic context of Azidopine

References

  1. Failure of liposomal encapsulation of doxorubicin to circumvent multidrug resistance in an in vitro model of rat glioblastoma cells. Hu, Y.P., Henry-Toulmé, N., Robert, J. Eur. J. Cancer (1995) [Pubmed]
  2. Liposome-mediated modulation of multidrug resistance in human HL-60 leukemia cells. Rahman, A., Husain, S.R., Siddiqui, J., Verma, M., Agresti, M., Center, M., Safa, A.R., Glazer, R.I. J. Natl. Cancer Inst. (1992) [Pubmed]
  3. Identification of the site of interaction of the dihydropyridine channel blockers nitrendipine and azidopine with the calcium-channel alpha 1 subunit. Regulla, S., Schneider, T., Nastainczyk, W., Meyer, H.E., Hofmann, F. EMBO J. (1991) [Pubmed]
  4. Reversal of anticancer multidrug resistance by the ardeemins. Chou, T.C., Depew, K.M., Zheng, Y.H., Safer, M.L., Chan, D., Helfrich, B., Zatorska, D., Zatorski, A., Bornmann, W., Danishefsky, S.J. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  5. Reversal of multidrug resistance in vivo by dietary administration of the phytochemical indole-3-carbinol. Christensen, J.G., LeBlanc, G.A. Cancer Res. (1996) [Pubmed]
  6. Reversal of P-glycoprotein-mediated MDR by 5,7,3',4',5'-pentamethoxyflavone and SAR. Choi, C.H., Kim, J.H., Kim, S.H. Biochem. Biophys. Res. Commun. (2004) [Pubmed]
  7. Relationship between the inhibition of azidopine binding to P-glycoprotein by MDR modulators and their efficiency in restoring doxorubicin intracellular accumulation. Hu, Y.P., Chapey, C., Robert, J. Cancer Lett. (1996) [Pubmed]
  8. Relationship of VP-16 to the classical multidrug resistance phenotype. Sehested, M., Friche, E., Jensen, P.B., Demant, E.J. Cancer Res. (1992) [Pubmed]
  9. Interaction of tamoxifen with the multidrug resistance P-glycoprotein. Callaghan, R., Higgins, C.F. Br. J. Cancer (1995) [Pubmed]
  10. Effects of nonionic detergents on P-glycoprotein drug binding and reversal of multidrug resistance. Zordan-Nudo, T., Ling, V., Liu, Z., Georges, E. Cancer Res. (1993) [Pubmed]
  11. RU49953: a non-hormonal steroid derivative that potently inhibits P-glycoprotein and reverts cellular multidrug resistance. Perez-Victorias, F.J., Conseil, G., Munoz-Martinez, F., Perez-Victoria, J.M., Dayan, G., Marsaud, V., Castanys, S., Gamarro, F., Renoir, J.M., Di Pietro, A. Cell. Mol. Life Sci. (2003) [Pubmed]
  12. P-glycoprotein-mediated transcellular transport of MDR-reversing agents. Saeki, T., Ueda, K., Tanigawara, Y., Hori, R., Komano, T. FEBS Lett. (1993) [Pubmed]
  13. Aureobasidin A, an antifungal cyclic depsipeptide antibiotic, is a substrate for both human MDR1 and MDR2/P-glycoproteins. Kino, K., Taguchi, Y., Yamada, K., Komano, T., Ueda, K. FEBS Lett. (1996) [Pubmed]
  14. Overlapping substrate specificities of cytochrome P450 3A and P-glycoprotein for a novel cysteine protease inhibitor. Zhang, Y., Guo, X., Lin, E.T., Benet, L.Z. Drug Metab. Dispos. (1998) [Pubmed]
  15. Reversal of P-glycoprotein-mediated multidrug resistance by protopanaxatriol ginsenosides from Korean red ginseng. Choi, C.H., Kang, G., Min, Y.D. Planta Med. (2003) [Pubmed]
  16. Functional analysis of P-glycoprotein mutants identifies predicted transmembrane domain 11 as a putative drug binding site. Kajiji, S., Talbot, F., Grizzuti, K., Van Dyke-Phillips, V., Agresti, M., Safa, A.R., Gros, P. Biochemistry (1993) [Pubmed]
  17. Characterization of anthracenediones and their photoaffinity analogs. Chou, K.M., Krapcho, A.P., Horn, D., Hacker, M. Biochem. Pharmacol. (2002) [Pubmed]
  18. Mechanism of action of dexniguldipine-HCl (B8509-035), a new potent modulator of multidrug resistance. Hofmann, J., Gekeler, V., Ise, W., Noller, A., Mitterdorfer, J., Hofer, S., Utz, I., Gotwald, M., Boer, R., Glossmann, H. Biochem. Pharmacol. (1995) [Pubmed]
  19. Azidopine photoaffinity labeling of multidrug resistance-associated glycoproteins. Yang, C.P., Mellado, W., Horwitz, S.B. Biochem. Pharmacol. (1988) [Pubmed]
  20. On the mechanism of action of doxorubicin encapsulation in nanospheres for the reversal of multidrug resistance. Hu, Y.P., Jarillon, S., Dubernet, C., Couvreur, P., Robert, J. Cancer Chemother. Pharmacol. (1996) [Pubmed]
 
WikiGenes - Universities