The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

KCNE3  -  potassium channel, voltage gated subfamily...

Homo sapiens

Synonyms: HOKPP, HYPP, MiRP2, MinK-related peptide 2, Minimum potassium ion channel-related peptide 2, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of KCNE3

 

High impact information on KCNE3

  • The subthreshold, voltage-gated potassium channel of skeletal muscle is shown to contain MinK-related peptide 2 (MiRP2) and the pore-forming subunit Kv3 [5].
  • A missense mutation is identified in the gene for MiRP2 (KCNE3) in two families with periodic paralysis and found to segregate with the disease [5].
  • Thus, MiRP2-Kv3.4 channels set resting membrane potential (RMP) and do not produce afterhyperpolarization or cumulative inactivation to limit action potential frequency [5].
  • An aliphatic amino acid substituted at position 58 of minK is capable of reproducing KCNE3-like kinetics and voltage-independent constitutive current activation [6].
  • An intermediate phenotype produced by several smaller aliphatic-substituted mutants yields conditional voltage independence that is distinct from the voltage-dependent gating process, suggesting that KCNE3 traps the channel in a stable open state [6].
 

Chemical compound and disease context of KCNE3

 

Biological context of KCNE3

  • Regulatory subunit KCNE3 (E3) interacts with KCNQ1 (Q1) in epithelia, regulating its activation kinetics and augmenting current density [8].
  • The SNPs analyses identified 112G/A SNP in the KCNE1 gene and 198T/C SNP in the KCNE3 gene in 63 definite MD cases as well as 205 and 237 non-MD control subjects [2].
  • Inhibition of hKCNE1- and hKCNE3-containing channels was weaker with IC50 values of 370 and 440 nM, respectively [9].
  • Phosphorylation and protonation of neighboring MiRP2 sites: function and pathophysiology of MiRP2-Kv3.4 potassium channels in periodic paralysis [10].
  • An R83H point mutation in KCNE3-encoded MiRP2 has been reported to cause 2% of all cases of familial periodic paralysis [11].
 

Anatomical context of KCNE3

 

Associations of KCNE3 with chemical compounds

 

Other interactions of KCNE3

  • The results suggest that KCNQ1, probably with KCNE2 or KCNE3 as its accessory unit, provides a significant fraction of IKvol in rat hepatocytes [12].
  • Namely I(ks), the slowly activating delayed rectifier current, is produced by KvLQT1/KCNE1, whereas KvLQT1/KCNE3 yields a more rapidly activating current with a distinct constitutively active component [18].
  • FHypoKPP is caused by mutations in ionic channel genes calcium (CACN1AS), sodium (SCN4A) and potassium (KCNE3) [3].

References

  1. A constitutively open potassium channel formed by KCNQ1 and KCNE3. Schroeder, B.C., Waldegger, S., Fehr, S., Bleich, M., Warth, R., Greger, R., Jentsch, T.J. Nature (2000) [Pubmed]
  2. Ménière's disease is associated with single nucleotide polymorphisms in the human potassium channel genes, KCNE1 and KCNE3. Doi, K., Sato, T., Kuramasu, T., Hibino, H., Kitahara, T., Horii, A., Matsushiro, N., Fuse, Y., Kubo, T. ORL J. Otorhinolaryngol. Relat. Spec. (2005) [Pubmed]
  3. A mutation in the KCNE3 potassium channel gene is associated with susceptibility to thyrotoxic hypokalemic periodic paralysis. Dias Da Silva, M.R., Cerutti, J.M., Arnaldi, L.A., Maciel, R.M. J. Clin. Endocrinol. Metab. (2002) [Pubmed]
  4. [KCNE3 R53H substitution in familial atrial fibrillation.]. Zhang, D.F., Liang, B., Lin, J., Liu, B., Zhou, Q.S., Yang, Y.Q. Chin. Med. J. (2005) [Pubmed]
  5. MiRP2 forms potassium channels in skeletal muscle with Kv3.4 and is associated with periodic paralysis. Abbott, G.W., Butler, M.H., Bendahhou, S., Dalakas, M.C., Ptacek, L.J., Goldstein, S.A. Cell (2001) [Pubmed]
  6. A single transmembrane site in the KCNE-encoded proteins controls the specificity of KvLQT1 channel gating. Melman, Y.F., Krumerman, A., McDonald, T.V. J. Biol. Chem. (2002) [Pubmed]
  7. Disease-associated mutations in KCNE potassium channel subunits (MiRPs) reveal promiscuous disruption of multiple currents and conservation of mechanism. Abbott, G.W., Goldstein, S.A. FASEB J. (2002) [Pubmed]
  8. Ectopic expression of KCNE3 accelerates cardiac repolarization and abbreviates the QT interval. Mazhari, R., Nuss, H.B., Armoundas, A.A., Winslow, R.L., Marbán, E. J. Clin. Invest. (2002) [Pubmed]
  9. Heteromeric KCNE2/KCNQ1 potassium channels in the luminal membrane of gastric parietal cells. Heitzmann, D., Grahammer, F., von Hahn, T., Schmitt-Gräff, A., Romeo, E., Nitschke, R., Gerlach, U., Lang, H.J., Verrey, F., Barhanin, J., Warth, R. J. Physiol. (Lond.) (2004) [Pubmed]
  10. Phosphorylation and protonation of neighboring MiRP2 sites: function and pathophysiology of MiRP2-Kv3.4 potassium channels in periodic paralysis. Abbott, G.W., Butler, M.H., Goldstein, S.A. FASEB J. (2006) [Pubmed]
  11. Periodic paralysis mutation MiRP2-R83H in controls: Interpretations and general recommendation. Jurkat-Rott, K., Lehmann-Horn, F. Neurology (2004) [Pubmed]
  12. Electrophysiological and molecular identification of hepatocellular volume-activated K+ channels. Lan, W.Z., Abbas, H., Lemay, A.M., Briggs, M.M., Hill, C.E. Biochim. Biophys. Acta (2005) [Pubmed]
  13. Mechanisms of anion secretion in Calu-3 human airway epithelial cells by 7,8-benzoquinoline. Cuthbert, A.W., MacVinish, L.J. Br. J. Pharmacol. (2003) [Pubmed]
  14. WTC deafness Kyoto (dfk): a rat model for extensive investigations of Kcnq1 functions. Gohma, H., Kuramoto, T., Kuwamura, M., Okajima, R., Tanimoto, N., Yamasaki, K., Nakanishi, S., Kitada, K., Makiyama, T., Akao, M., Kita, T., Sasa, M., Serikawa, T. Physiol. Genomics (2006) [Pubmed]
  15. MinK-related peptide 2 modulates Kv2.1 and Kv3.1 potassium channels in mammalian brain. McCrossan, Z.A., Lewis, A., Panaghie, G., Jordan, P.N., Christini, D.J., Lerner, D.J., Abbott, G.W. J. Neurosci. (2003) [Pubmed]
  16. KCNQ potassium channels: physiology, pathophysiology, and pharmacology. Robbins, J. Pharmacol. Ther. (2001) [Pubmed]
  17. The Cdc42 inhibitor secramine B prevents cAMP-induced K+ conductance in intestinal epithelial cells. Pelish, H.E., Ciesla, W., Tanaka, N., Reddy, K., Shair, M.D., Kirchhausen, T., Lencer, W.I. Biochem. Pharmacol. (2006) [Pubmed]
  18. Structural determinants of KvLQT1 control by the KCNE family of proteins. Melman, Y.F., Domènech, A., de la Luna, S., McDonald, T.V. J. Biol. Chem. (2001) [Pubmed]
 
WikiGenes - Universities