The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

SureCN313837     1-octadecylpyridine chloride

Synonyms: AG-K-32719, NSC-12139, AC1L2RBP, NSC12139, CTK1C6479, ...
This record was replaced with 76629.
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of NSC12139

  • An incomplete understanding of the molecular mechanisms by which alterations in an apical membrane chloride conductance could give rise to the various clinical manifestations of cystic fibrosis has prompted the suggestion that CFTR may also play a role in the normal function of certain intracellular compartments [1].
  • This review focuses on mechanisms whereby the deletion or impairment of CFTR chloride channel function produces lung disease [2].
  • There is convincing evidence that active sodium and chloride transporters are expressed in the distal lung epithelium and are responsible for the ability of the lung to remove alveolar fluid at the time of birth as well as in the mature lung when pathological conditions lead to the development of pulmonary edema [3].
  • We evaluated the use of the urinary anion gap (sodium plus potassium minus chloride) in assessing hyperchloremic metabolic acidosis in 38 patients with altered distal urinary acidification and in 8 patients with diarrhea [4].
  • Alkalosis from chloride-deficient Neo-Mull-Soy [5].

Psychiatry related information on NSC12139


High impact information on NSC12139


Chemical compound and disease context of NSC12139


Biological context of NSC12139


Anatomical context of NSC12139


Associations of NSC12139 with other chemical compounds


Gene context of NSC12139


Analytical, diagnostic and therapeutic context of NSC12139


  1. Intracellular CFTR: localization and function. Bradbury, N.A. Physiol. Rev. (1999) [Pubmed]
  2. Role of CFTR in airway disease. Pilewski, J.M., Frizzell, R.A. Physiol. Rev. (1999) [Pubmed]
  3. Lung epithelial fluid transport and the resolution of pulmonary edema. Matthay, M.A., Folkesson, H.G., Clerici, C. Physiol. Rev. (2002) [Pubmed]
  4. The use of the urinary anion gap in the diagnosis of hyperchloremic metabolic acidosis. Batlle, D.C., Hizon, M., Cohen, E., Gutterman, C., Gupta, R. N. Engl. J. Med. (1988) [Pubmed]
  5. Alkalosis from chloride-deficient Neo-Mull-Soy. Roy, S., Arant, B.S. N. Engl. J. Med. (1979) [Pubmed]
  6. Letter: Plasma concentration of free choline in patients with Huntington's chorea on high doses of choline chloride. Aquilonius, S.M., Eckernäs, S.A. N. Engl. J. Med. (1975) [Pubmed]
  7. Taste flashes: reaction times, intensity, and quality. Kelling, S.T., Halpern, B.P. Science (1983) [Pubmed]
  8. Cortical biopsy in Alzheimer's disease: diagnostic accuracy and neurochemical, neuropathological, and cognitive correlations. Intraventricular Bethanecol Study Group. DeKosky, S.T., Harbaugh, R.E., Schmitt, F.A., Bakay, R.A., Chui, H.C., Knopman, D.S., Reeder, T.M., Shetter, A.G., Senter, H.J., Markesbery, W.R. Ann. Neurol. (1992) [Pubmed]
  9. Episodic-like memory in the rat. Babb, S.J., Crystal, J.D. Curr. Biol. (2006) [Pubmed]
  10. Effect of chloride or glucose on the incidence of lactate-induced panic attacks. George, D.T., Lindquist, T., Nutt, D.J., Ragan, P.W., Alim, T., McFarlane, V., Leviss, J., Eckardt, M.J., Linnoila, M. The American journal of psychiatry. (1995) [Pubmed]
  11. Structure and function of CLCA proteins. Loewen, M.E., Forsyth, G.W. Physiol. Rev. (2005) [Pubmed]
  12. Molecular structure and physiological function of chloride channels. Jentsch, T.J., Stein, V., Weinreich, F., Zdebik, A.A. Physiol. Rev. (2002) [Pubmed]
  13. Non-polarized targeting of AE1 causes autosomal dominant distal renal tubular acidosis. Devonald, M.A., Smith, A.N., Poon, J.P., Ihrke, G., Karet, F.E. Nat. Genet. (2003) [Pubmed]
  14. "Salt-sensitive" essential hypertension in men. Is the sodium ion alone important? Kurtz, T.W., Al-Bander, H.A., Morris, R.C. N. Engl. J. Med. (1987) [Pubmed]
  15. Cyclic AMP-dependent protein kinase opens chloride channels in normal but not cystic fibrosis airway epithelium. Li, M., McCann, J.D., Liedtke, C.M., Nairn, A.C., Greengard, P., Welsh, M.J. Nature (1988) [Pubmed]
  16. Differential repair of O(6)-methylguanine in DNA of rat hepatocytes and nonparenchymal cells. Lewis, J.G., Swenberg, J.A. Nature (1980) [Pubmed]
  17. Lung fibrosis and emphysema: divergent responses to a common injury? Niewoehner, D.E., Hoidal, J.R. Science (1982) [Pubmed]
  18. Kidney kinetics and chloride ion pumps. Kere, J. Nat. Genet. (1999) [Pubmed]
  19. Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel. Cheng, S.H., Rich, D.P., Marshall, J., Gregory, R.J., Welsh, M.J., Smith, A.E. Cell (1991) [Pubmed]
  20. The acidosis of cholera. Contributions of hyperproteinemia, lactic acidemia, and hyperphosphatemia to an increased serum anion gap. Wang, F., Butler, T., Rabbani, G.H., Jones, P.K. N. Engl. J. Med. (1986) [Pubmed]
  21. The relation between genotype and phenotype in cystic fibrosis--analysis of the most common mutation (delta F508). Kerem, E., Corey, M., Kerem, B.S., Rommens, J., Markiewicz, D., Levison, H., Tsui, L.C., Durie, P. N. Engl. J. Med. (1990) [Pubmed]
  22. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Kornak, U., Kasper, D., Bösl, M.R., Kaiser, E., Schweizer, M., Schulz, A., Friedrich, W., Delling, G., Jentsch, T.J. Cell (2001) [Pubmed]
  23. A cystic fibrosis mutation associated with mild lung disease. Gan, K.H., Veeze, H.J., van den Ouweland, A.M., Halley, D.J., Scheffer, H., van der Hout, A., Overbeek, S.E., de Jongste, J.C., Bakker, W., Heijerman, H.G. N. Engl. J. Med. (1995) [Pubmed]
  24. Molecular characterization of a swelling-induced chloride conductance regulatory protein, pICln. Krapivinsky, G.B., Ackerman, M.J., Gordon, E.A., Krapivinsky, L.D., Clapham, D.E. Cell (1994) [Pubmed]
  25. Cystic fibrosis transmembrane conductance regulator splice variants are not conserved and fail to produce chloride channels. Delaney, S.J., Rich, D.P., Thomson, S.A., Hargrave, M.R., Lovelock, P.K., Welsh, M.J., Wainwright, B.J. Nat. Genet. (1993) [Pubmed]
  26. Higher bioelectric potentials due to decreased chloride absorption in the sweat glands of patients with cystic fibrosis. Quinton, P.M., Bijman, J. N. Engl. J. Med. (1983) [Pubmed]
  27. Cesium chloride gradients of chromatin after treatment with micrococcal nuclease. Doenecke, D. Cell (1976) [Pubmed]
  28. Receptor-mediated internalization of Pseudomonas toxin by mouse fibroblasts. FitzGerald, D., Morris, R.E., Saelinger, C.B. Cell (1980) [Pubmed]
  29. The Pendred syndrome gene encodes a chloride-iodide transport protein. Scott, D.A., Wang, R., Kreman, T.M., Sheffield, V.C., Karniski, L.P. Nat. Genet. (1999) [Pubmed]
  30. Activation by extracellular nucleotides of chloride secretion in the airway epithelia of patients with cystic fibrosis. Knowles, M.R., Clarke, L.L., Boucher, R.C. N. Engl. J. Med. (1991) [Pubmed]
  31. Accessory protein facilitated CFTR-CFTR interaction, a molecular mechanism to potentiate the chloride channel activity. Wang, S., Yue, H., Derin, R.B., Guggino, W.B., Li, M. Cell (2000) [Pubmed]
  32. Mutations in CLCN2 encoding a voltage-gated chloride channel are associated with idiopathic generalized epilepsies. Haug, K., Warnstedt, M., Alekov, A.K., Sander, T., Ramírez, A., Poser, B., Maljevic, S., Hebeisen, S., Kubisch, C., Rebstock, J., Horvath, S., Hallmann, K., Dullinger, J.S., Rau, B., Haverkamp, F., Beyenburg, S., Schulz, H., Janz, D., Giese, B., Müller-Newen, G., Propping, P., Elger, C.E., Fahlke, C., Lerche, H., Heils, A. Nat. Genet. (2003) [Pubmed]
  33. Hartnup disorder is caused by mutations in the gene encoding the neutral amino acid transporter SLC6A19. Seow, H.F., Bröer, S., Bröer, A., Bailey, C.G., Potter, S.J., Cavanaugh, J.A., Rasko, J.E. Nat. Genet. (2004) [Pubmed]
  34. Volume-regulated chloride channels associated with the human multidrug-resistance P-glycoprotein. Valverde, M.A., Díaz, M., Sepúlveda, F.V., Gill, D.R., Hyde, S.C., Higgins, C.F. Nature (1992) [Pubmed]
  35. Regulation of CFTR chloride channels by syntaxin and Munc18 isoforms. Naren, A.P., Nelson, D.J., Xie, W., Jovov, B., Pevsner, J., Bennett, M.K., Benos, D.J., Quick, M.W., Kirk, K.L. Nature (1997) [Pubmed]
  36. Overt nephrogenic diabetes insipidus in mice lacking the CLC-K1 chloride channel. Matsumura, Y., Uchida, S., Kondo, Y., Miyazaki, H., Ko, S.B., Hayama, A., Morimoto, T., Liu, W., Arisawa, M., Sasaki, S., Marumo, F. Nat. Genet. (1999) [Pubmed]
  37. Gene therapy in a xenograft model of cystic fibrosis lung corrects chloride transport more effectively than the sodium defect. Goldman, M.J., Yang, Y., Wilson, J.M. Nat. Genet. (1995) [Pubmed]
  38. Inactivation of muscle chloride channel by transposon insertion in myotonic mice. Steinmeyer, K., Klocke, R., Ortland, C., Gronemeier, M., Jockusch, H., Gründer, S., Jentsch, T.J. Nature (1991) [Pubmed]
WikiGenes - Universities