The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

KCNE1  -  potassium channel, voltage gated subfamily...

Homo sapiens

Synonyms: Delayed rectifier potassium channel subunit IsK, IKs producing slow voltage-gated potassium channel subunit beta Mink, ISK, JLNS, JLNS2, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of KCNE1


High impact information on KCNE1


Chemical compound and disease context of KCNE1


Biological context of KCNE1


Anatomical context of KCNE1

  • In CHO cells, Kv4.3+KChIP2 currents were differentially modified by co-expressed KCNEs: time constants of inactivation were shorter with KCNE1 and KCNE3-5 while time-to-peak was decreased, and V(0.5) of steady-state inactivation was shifted to more negative potentials by all KCNE subunits [19].
  • In situ hybridization revealed prominent expression of KCNE1 and KCNE3-5 in human atrial myocytes [20].
  • Deafness results also from mutations of KCNQ1 or KCNE1, subunits of a K(+) channel that carries K(+) from strial marginal cells and vestibular dark cells into endolymph [21].
  • In oocytes injected with KCNE1 cRNA but not in water-injected oocytes a depolarization from -80 mV to -10 mV led to the appearance of a slowly activating K(+) current [22].
  • The slowly activating K(+) channel subunit KCNE1 is expressed in a variety of tissues including proximal renal tubules, cardiac myocytes and stria vascularis of inner ear [22].

Associations of KCNE1 with chemical compounds

  • In addition, we found that KCNE1 and KCNQ1 mRNAs are expressed in the zona glomerulosa of adrenal glands where I(Ks) may directly participate in the control of aldosterone production by plasma K(+) [13].
  • These data strongly suggest that access of Cd(2+) to the cysteine-mutated site on KCNE1 is independent of pore occlusion caused by TEA(+) binding to the outer region of the KCNE1/V319Y pore, and that KCNE1 does not reside within the pore region of the assembled channels [23].
  • Coexpression of a cysteine-substituted KCNE1 (F54C) with V319Y significantly increases the sensitivity of channels to external Cd(2+), but neither the extent of nor the kinetics of the onset of (or the recovery from) Cd(2+) block was affected by [TEA(+)](o) at 10x the IC(50) for channel block [23].
  • The typical I (Ks) was slowly activated upon depolarization voltages in HEK 293 cells stably expressing human cardiac KCNQ1 and KCNE1 genes, and the current was inhibited by I (Ks) blockers HMR 1556 and chromanol 293B, with 50% inhibitory concentrations (IC(50)s) of 83.8 nM: and 9.2 muM: , respectively [24].
  • A concentration-dependent effect of estradiol on the KCNQ1/KCNE1-mediated potassium current was observed [25].

Physical interactions of KCNE1

  • However, co-expression of these inhibitory subunits with a disease-associated mutation (S140G-KCNQ1) led to currents that were almost undistinguishable from the KCNQ1/KCNE1 canonical complex [26].
  • This might suggest modulation of KCNQ4 by interacting KCNE Beta-subunits, which are known to modify the properties of the closely related KCNQ1 [27].

Regulatory relationships of KCNE1

  • We speculate that since KCNE5 is expressed in cardiac tissue it may here along with the KCNE1 beta-subunit regulate KCNQ1 channels [28].
  • Importantly, KCNE2 induced a unique and prominent 'overshoot' of peak current during recovery from inactivation similar to that described for human I(to) while other KCNE subunits induced little (KCNE4,5) or no overshoot [19].

Other interactions of KCNE1

  • The KCNQ1 gene encodes KvLQT1 alpha-subunits, which together with auxiliary IsK (KCNE1, minK) subunits form IK(s) K(+) channels [29].
  • KCNQ1 and HERG appear to share unique interactions with KCNE1, 2 and 3 subunits [30].
  • Namely I(ks), the slowly activating delayed rectifier current, is produced by KvLQT1/KCNE1, whereas KvLQT1/KCNE3 yields a more rapidly activating current with a distinct constitutively active component [31].
  • Compared to non-failing tissue, failing hearts showed higher expression of Kv4.3-L and KCNE1 and lower of Kv4.3-S, KChIP2, KCNE4, and KCNE5 [19].
  • Regulation of KCNE1-dependent K(+) current by the serum and glucocorticoid-inducible kinase (SGK) isoforms [22].

Analytical, diagnostic and therapeutic context of KCNE1

  • METHODS: We have carried out a comparative study of all KCNE subunits with KCNQ1 using the patch-clamp technique in mammalian cells [26].
  • To investigate the potential physiological relevance of this gene family in human heart, we examined the relative expression of KCNQ1 and all five KCNE genes in samples derived from normal tissues representing major regions of human heart by real-time, quantitative RT-PCR [20].
  • Cotransfection with the minK mutants resulted in reduced surface expression of KvLQT1 as assayed by whole cell voltage clamp and immunofluorescence [32].
  • Consistent with these electrophysiological results, the carboxy-terminal tail of KCNE2, but not of other KCNE subunits, interacted with the carboxy-terminal tail of HCN4 in yeast two-hybrid assays [33].
  • The reduced current amplitude was also caused by intracellular retention of Q357R/KCNE1 channels as was shown by confocal microscopy [34].


  1. Mutations in the hminK gene cause long QT syndrome and suppress IKs function. Splawski, I., Tristani-Firouzi, M., Lehmann, M.H., Sanguinetti, M.C., Keating, M.T. Nat. Genet. (1997) [Pubmed]
  2. Human congenital long QT syndrome: more than previously thought? Attali, B. Trends Pharmacol. Sci. (2002) [Pubmed]
  3. Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Splawski, I., Shen, J., Timothy, K.W., Lehmann, M.H., Priori, S., Robinson, J.L., Moss, A.J., Schwartz, P.J., Towbin, J.A., Vincent, G.M., Keating, M.T. Circulation (2000) [Pubmed]
  4. Molecular genetics of long-QT syndrome. Wattanasirichaigoon, D., Beggs, A.H. Curr. Opin. Pediatr. (1998) [Pubmed]
  5. Ménière's disease is associated with single nucleotide polymorphisms in the human potassium channel genes, KCNE1 and KCNE3. Doi, K., Sato, T., Kuramasu, T., Hibino, H., Kitahara, T., Horii, A., Matsushiro, N., Fuse, Y., Kubo, T. ORL J. Otorhinolaryngol. Relat. Spec. (2005) [Pubmed]
  6. KCNE1 mutations cause jervell and Lange-Nielsen syndrome. Schulze-Bahr, E., Wang, Q., Wedekind, H., Haverkamp, W., Chen, Q., Sun, Y., Rubie, C., Hördt, M., Towbin, J.A., Borggrefe, M., Assmann, G., Qu, X., Somberg, J.C., Breithardt, G., Oberti, C., Funke, H. Nat. Genet. (1997) [Pubmed]
  7. The conduction pore of a cardiac potassium channel. Tai, K.K., Goldstein, S.A. Nature (1998) [Pubmed]
  8. A minK-HERG complex regulates the cardiac potassium current I(Kr). McDonald, T.V., Yu, Z., Ming, Z., Palma, E., Meyers, M.B., Wang, K.W., Goldstein, S.A., Fishman, G.I. Nature (1997) [Pubmed]
  9. Disease-associated mutations in KCNE potassium channel subunits (MiRPs) reveal promiscuous disruption of multiple currents and conservation of mechanism. Abbott, G.W., Goldstein, S.A. FASEB J. (2002) [Pubmed]
  10. Characterization of a novel Long QT syndrome mutation G52R-KCNE1 in a Chinese family. Ma, L., Lin, C., Teng, S., Chai, Y., Bähring, R., Vardanyan, V., Li, L., Pongs, O., Hui, R. Cardiovasc. Res. (2003) [Pubmed]
  11. Characterization of a novel missense mutation in the pore of HERG in a patient with long QT syndrome. Yoshida, H., Horie, M., Otani, H., Takano, M., Tsuji, K., Kubota, T., Fukunami, M., Sasayama, S. J. Cardiovasc. Electrophysiol. (1999) [Pubmed]
  12. Impaired KCNQ1-KCNE1 and phosphatidylinositol-4,5-bisphosphate interaction underlies the long QT syndrome. Park, K.H., Piron, J., Dahimene, S., Mérot, J., Baró, I., Escande, D., Loussouarn, G. Circ. Res. (2005) [Pubmed]
  13. Altered potassium balance and aldosterone secretion in a mouse model of human congenital long QT syndrome. Arrighi, I., Bloch-Faure, M., Grahammer, F., Bleich, M., Warth, R., Mengual, R., Drici, M.D., Barhanin, J., Meneton, P. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  14. Requirement of subunit expression for cAMP-mediated regulation of a heart potassium channel. Kurokawa, J., Chen, L., Kass, R.S. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  15. Functional expression of two KvLQT1-related potassium channels responsible for an inherited idiopathic epilepsy. Yang, W.P., Levesque, P.C., Little, W.A., Conder, M.L., Ramakrishnan, P., Neubauer, M.G., Blanar, M.A. J. Biol. Chem. (1998) [Pubmed]
  16. Atrial fibrillation-associated minK38G/S polymorphism modulates delayed rectifier current and membrane localization. Ehrlich, J.R., Zicha, S., Coutu, P., Hébert, T.E., Nattel, S. Cardiovasc. Res. (2005) [Pubmed]
  17. Single nucleotide polymorphism map of five long-QT genes. Aydin, A., Bähring, S., Dahm, S., Guenther, U.P., Uhlmann, R., Busjahn, A., Luft, F.C. J. Mol. Med. (2005) [Pubmed]
  18. Genomic structure of three long QT syndrome genes: KVLQT1, HERG, and KCNE1. Splawski, I., Shen, J., Timothy, K.W., Vincent, G.M., Lehmann, M.H., Keating, M.T. Genomics (1998) [Pubmed]
  19. Functional modulation of the transient outward current Ito by KCNE beta-subunits and regional distribution in human non-failing and failing hearts. Radicke, S., Cotella, D., Graf, E.M., Banse, U., Jost, N., Varró, A., Tseng, G.N., Ravens, U., Wettwer, E. Cardiovasc. Res. (2006) [Pubmed]
  20. Expression of multiple KCNE genes in human heart may enable variable modulation of I(Ks). Lundquist, A.L., Manderfield, L.J., Vanoye, C.G., Rogers, C.S., Donahue, B.S., Chang, P.A., Drinkwater, D.C., Murray, K.T., George, A.L. J. Mol. Cell. Cardiol. (2005) [Pubmed]
  21. K(+) cycling and its regulation in the cochlea and the vestibular labyrinth. Wangemann, P. Audiol. Neurootol. (2002) [Pubmed]
  22. Regulation of KCNE1-dependent K(+) current by the serum and glucocorticoid-inducible kinase (SGK) isoforms. Embark, H.M., Böhmer, C., Vallon, V., Luft, F., Lang, F. Pflugers Arch. (2003) [Pubmed]
  23. TEA(+)-sensitive KCNQ1 constructs reveal pore-independent access to KCNE1 in assembled I(Ks) channels. Kurokawa, J., Motoike, H.K., Kass, R.S. J. Gen. Physiol. (2001) [Pubmed]
  24. Characterization of recombinant human cardiac KCNQ1/KCNE1 channels (I (Ks)) stably expressed in HEK 293 cells. Dong, M.Q., Lau, C.P., Gao, Z., Tseng, G.N., Li, G.R. J. Membr. Biol. (2006) [Pubmed]
  25. Effects of estradiol on cardiac ion channel currents. Möller, C., Netzer, R. Eur. J. Pharmacol. (2006) [Pubmed]
  26. In vitro molecular interactions and distribution of KCNE family with KCNQ1 in the human heart. Bendahhou, S., Marionneau, C., Haurogne, K., Larroque, M.M., Derand, R., Szuts, V., Escande, D., Demolombe, S., Barhanin, J. Cardiovasc. Res. (2005) [Pubmed]
  27. Functional coassembly of KCNQ4 with KCNE-beta- subunits in Xenopus oocytes. Strutz-Seebohm, N., Seebohm, G., Fedorenko, O., Baltaev, R., Engel, J., Knirsch, M., Lang, F. Cell. Physiol. Biochem. (2006) [Pubmed]
  28. KCNE5 induces time- and voltage-dependent modulation of the KCNQ1 current. Angelo, K., Jespersen, T., Grunnet, M., Nielsen, M.S., Klaerke, D.A., Olesen, S.P. Biophys. J. (2002) [Pubmed]
  29. A recessive C-terminal Jervell and Lange-Nielsen mutation of the KCNQ1 channel impairs subunit assembly. Schmitt, N., Schwarz, M., Peretz, A., Abitbol, I., Attali, B., Pongs, O. EMBO J. (2000) [Pubmed]
  30. KCNE2 confers background current characteristics to the cardiac KCNQ1 potassium channel. Tinel, N., Diochot, S., Borsotto, M., Lazdunski, M., Barhanin, J. EMBO J. (2000) [Pubmed]
  31. Structural determinants of KvLQT1 control by the KCNE family of proteins. Melman, Y.F., Domènech, A., de la Luna, S., McDonald, T.V. J. Biol. Chem. (2001) [Pubmed]
  32. An LQT mutant minK alters KvLQT1 trafficking. Krumerman, A., Gao, X., Bian, J.S., Melman, Y.F., Kagan, A., McDonald, T.V. Am. J. Physiol., Cell Physiol. (2004) [Pubmed]
  33. KCNE2 modulates current amplitudes and activation kinetics of HCN4: influence of KCNE family members on HCN4 currents. Decher, N., Bundis, F., Vajna, R., Steinmeyer, K. Pflugers Arch. (2003) [Pubmed]
  34. Functional effects of a KCNQ1 mutation associated with the long QT syndrome. Boulet, I.R., Raes, A.L., Ottschytsch, N., Snyders, D.J. Cardiovasc. Res. (2006) [Pubmed]
WikiGenes - Universities