The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Syn2  -  synapsin II

Mus musculus

Synonyms: 2900074L19Rik, AI836018, AI841723, Synapsin II, Synapsin IIa, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Syn2

 

High impact information on Syn2

  • Studies of knockout mice have shown that the synaptic vesicle protein Rab3A is required for mossy fibre LTP, but the protein kinase A substrates rabphilin, synapsin I and synapsin II are dispensable [2].
  • In synapsin I, the Ca2+ requirement for ATP binding is mediated by a single, evolutionarily conserved glutamate residue (Glu373) at a position where synapsin II contains a lysine residue [3].
  • RESULTS: Our behavioral results demonstrate that alpha CaMKII +/-, SyII-/- and SyI/II-/- mutant mice, which have decreased PPF or PTP, have profound impairments in learning tasks [4].
  • Synapsin II is an abundant peripheral membrane protein of synaptic vesicles that is expressed exclusively in neuronal cells [5].
  • CONCLUSIONS/INTERPRETATION: These results demonstrate that Syn-1A and -3 possess strong inhibitory actions on both insulin exocytosis and insulin biosynthesis whereas Syn-2 and -4 do not inhibit the insulin secretory process [6].
 

Biological context of Syn2

 

Anatomical context of Syn2

 

Associations of Syn2 with chemical compounds

  • In addition, the formalin evoked increase in the number of c-Fos IR neurons is significantly reduced in synapsin II knockout mice [1].
  • Protein kinase inhibitor H7 (100 microM) suppressed quantal release significantly stronger in Syn II KO synapses than in wild type (WT), indicating that Syn II KO synapses may compensate for the lack of synapsin II via a phosphorylation-dependent pathway [12].
  • Since synapsin II is involved in neurotransmitter release and synaptogenesis, and changes in synaptic efficacy and structure are suggested in schizophrenia as well as in haloperidol treatment, our findings offer insight into the mechanistic actions of the antipsychotic agent at the synaptic level [11].
  • Based on these findings, we propose dopamine receptors may specifically regulate synapsin II expression through a cyclic AMP-dependent pathway [11].
 

Other interactions of Syn2

 

Analytical, diagnostic and therapeutic context of Syn2

  • Electron microscopy analysis demonstrated that the lack of synapsin II results in an approximately 40% decrease in the density of synaptic vesicles in the reserve pool, while the number of vesicles docked to the presynaptic membrane remained unchanged [12].

References

  1. Essential role of the synaptic vesicle protein synapsin II in formalin-induced hyperalgesia and glutamate release in the spinal cord. Schmidtko, A., Del Turco, D., Coste, O., Ehnert, C., Niederberger, E., Ruth, P., Deller, T., Geisslinger, G., Tegeder, I. Pain (2005) [Pubmed]
  2. RIM1alpha is required for presynaptic long-term potentiation. Castillo, P.E., Schoch, S., Schmitz, F., Südhof, T.C., Malenka, R.C. Nature (2002) [Pubmed]
  3. Synapsins I and II are ATP-binding proteins with differential Ca2+ regulation. Hosaka, M., Südhof, T.C. J. Biol. Chem. (1998) [Pubmed]
  4. Impaired learning in mice with abnormal short-lived plasticity. Silva, A.J., Rosahl, T.W., Chapman, P.F., Marowitz, Z., Friedman, E., Frankland, P.W., Cestari, V., Cioffi, D., Südhof, T.C., Bourtchuladze, R. Curr. Biol. (1996) [Pubmed]
  5. Neuron-specific expression of the synapsin II gene is directed by a specific core promoter and upstream regulatory elements. Chin, L.S., Li, L., Greengard, P. J. Biol. Chem. (1994) [Pubmed]
  6. Syntaxin-3 and syntaxin-1A inhibit L-type calcium channel activity, insulin biosynthesis and exocytosis in beta-cell lines. Kang, Y., Huang, X., Pasyk, E.A., Ji, J., Holz, G.G., Wheeler, M.B., Tsushima, R.G., Gaisano, H.Y. Diabetologia (2002) [Pubmed]
  7. Physical and genetic maps of the deafwaddler region on distal mouse Chr 6. McKee-Johnson, J.W., Street, V.A., Erford, S.K., Robinson, L.C., Tempel, B.L. Genomics (1998) [Pubmed]
  8. Mapping of synapsin II (SYN2) genes to human chromosome 3p and mouse chromosome 6 band F. Li, X., Rosahl, T.W., Südhof, T.C., Francke, U. Cytogenet. Cell Genet. (1995) [Pubmed]
  9. Characterization of the murine Timp4 gene, localization within intron 5 of the synapsin 2 gene and tissue distribution of the mRNA. Rahkonen, O.P., Koskivirta, I.M., Oksjoki, S.M., Jokinen, E., Vuorio, E.I. Biochim. Biophys. Acta (2002) [Pubmed]
  10. Long-term potentiation in mice lacking synapsins. Spillane, D.M., Rosahl, T.W., Südhof, T.C., Malenka, R.C. Neuropharmacology (1995) [Pubmed]
  11. Dopamine-D1 and -D2 receptors differentially regulate synapsin II expression in the rat brain. Chong, V.Z., Skoblenick, K., Morin, F., Xu, Y., Mishra, R.K. Neuroscience (2006) [Pubmed]
  12. Regulation of transmitter release by synapsin II in mouse motor terminals. Samigullin, D., Bill, C.A., Coleman, W.L., Bykhovskaia, M. J. Physiol. (Lond.) (2004) [Pubmed]
  13. Essential functions of synapsins I and II in synaptic vesicle regulation. Rosahl, T.W., Spillane, D., Missler, M., Herz, J., Selig, D.K., Wolff, J.R., Hammer, R.E., Malenka, R.C., Südhof, T.C. Nature (1995) [Pubmed]
  14. Synapsin III: developmental expression, subcellular localization, and role in axon formation. Ferreira, A., Kao, H.T., Feng, J., Rapoport, M., Greengard, P. J. Neurosci. (2000) [Pubmed]
  15. Long-term culture of mouse cortical neurons as a model for neuronal development, aging, and death. Lesuisse, C., Martin, L.J. J. Neurobiol. (2002) [Pubmed]
 
WikiGenes - Universities