The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Syn1  -  synapsin I

Mus musculus

Synonyms: Syn-1, Synapsin I, Synapsin Ia, Synapsin Ib, Synapsin-1
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Syn1

 

Psychiatry related information on Syn1

 

High impact information on Syn1

 

Biological context of Syn1

  • A GFP transgene has been integrated on the proximal part of the mouse X chromosome just distal of Timp and Syn1 [11].
  • The phenotype of the synapsin knockouts could be explained either by deficient recruitment of synaptic vesicles to the active zone, or by impaired maturation of vesicles at the active zone, both of which could lead to a secondary destabilization of synaptic vesicles [12].
  • Transfection experiments using synapsin II-luciferase fusion genes demonstrate that the 5'-flanking sequence functions as a strong promoter in neuronal but not in nonneuronal cells [13].
  • Although there is no extensive sequence homology between the 5'-flanking regions of the synapsin I and II genes, comparison analysis has identified two regions of homologous sequences, which may be involved in determining neuron specificity of the core promoters of these two genes [13].
  • To gain further insight into the functional significance of the phosphorylation sites on the synapsins, we have examined a number of synaptic processes thought to be mediated by protein kinases in knockout mice lacking both forms of synapsin (Rosahl et al., 1995) [14].
 

Anatomical context of Syn1

 

Associations of Syn1 with chemical compounds

 

Physical interactions of Syn1

  • Using a complementary approach, we confirmed an association of synapsin with NFs by demonstrating that immunoprecipitated synapsin I complexes contained NF-H and NF medium (160-kDa) subunits [23].
  • Neither amelin nor synapsin I binds calmodulin, as determined by a blot binding assay [24].
 

Enzymatic interactions of Syn1

 

Co-localisations of Syn1

 

Regulatory relationships of Syn1

 

Other interactions of Syn1

 

Analytical, diagnostic and therapeutic context of Syn1

References

  1. Impairment of inhibitory synaptic transmission in mice lacking synapsin I. Terada, S., Tsujimoto, T., Takei, Y., Takahashi, T., Hirokawa, N. J. Cell Biol. (1999) [Pubmed]
  2. Cloning from insulinoma cells of synapsin I associated with insulin secretory granules. Matsumoto, K., Ebihara, K., Yamamoto, H., Tabuchi, H., Fukunaga, K., Yasunami, M., Ohkubo, H., Shichiri, M., Miyamoto, E. J. Biol. Chem. (1999) [Pubmed]
  3. Determination of synapsin I and synaptophysin in body fluids by two-site enzyme-linked immunosorbent assays. Schlaf, G., Salje, C., Wetter, A., Stuertz, K., Felgenhauer, K., Mäder, M. J. Immunol. Methods (1998) [Pubmed]
  4. RE-1 silencing transcription factor (REST) regulates human synaptophysin gene transcription through an intronic sequence-specific DNA-binding site. Lietz, M., Hohl, M., Thiel, G. Eur. J. Biochem. (2003) [Pubmed]
  5. Postnatal hypoxic-ischemic brain injury alters mechanisms mediating neuronal glucose transport. Zovein, A., Flowers-Ziegler, J., Thamotharan, S., Shin, D., Sankar, R., Nguyen, K., Gambhir, S., Devaskar, S.U. Am. J. Physiol. Regul. Integr. Comp. Physiol. (2004) [Pubmed]
  6. Abnormal phosphorylation of synapsin I predicts a neuronal transmission impairment in the R6/2 Huntington's disease transgenic mice. Liévens, J.C., Woodman, B., Mahal, A., Bates, G.P. Mol. Cell. Neurosci. (2002) [Pubmed]
  7. Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling. Hall, A.C., Lucas, F.R., Salinas, P.C. Cell (2000) [Pubmed]
  8. Short-term synaptic plasticity is altered in mice lacking synapsin I. Rosahl, T.W., Geppert, M., Spillane, D., Herz, J., Hammer, R.E., Malenka, R.C., Südhof, T.C. Cell (1993) [Pubmed]
  9. RIM1alpha is required for presynaptic long-term potentiation. Castillo, P.E., Schoch, S., Schmitz, F., Südhof, T.C., Malenka, R.C. Nature (2002) [Pubmed]
  10. Ablation of NF1 function in neurons induces abnormal development of cerebral cortex and reactive gliosis in the brain. Zhu, Y., Romero, M.I., Ghosh, P., Ye, Z., Charnay, P., Rushing, E.J., Marth, J.D., Parada, L.F. Genes Dev. (2001) [Pubmed]
  11. An X-linked GFP transgene reveals unexpected paternal X-chromosome activity in trophoblastic giant cells of the mouse placenta. Hadjantonakis, A.K., Cox, L.L., Tam, P.P., Nagy, A. Genesis (2001) [Pubmed]
  12. Essential functions of synapsins I and II in synaptic vesicle regulation. Rosahl, T.W., Spillane, D., Missler, M., Herz, J., Selig, D.K., Wolff, J.R., Hammer, R.E., Malenka, R.C., Südhof, T.C. Nature (1995) [Pubmed]
  13. Neuron-specific expression of the synapsin II gene is directed by a specific core promoter and upstream regulatory elements. Chin, L.S., Li, L., Greengard, P. J. Biol. Chem. (1994) [Pubmed]
  14. Long-term potentiation in mice lacking synapsins. Spillane, D.M., Rosahl, T.W., Südhof, T.C., Malenka, R.C. Neuropharmacology (1995) [Pubmed]
  15. Synapsin associates with cyclophilin B in an ATP- and cyclosporin A-dependent manner. Lane-Guermonprez, L., Morot-Gaudry-Talarmain, Y., Meunier, F.M., O'Regan, S., Onofri, F., Le Caer, J.P., Benfenati, F. J. Neurochem. (2005) [Pubmed]
  16. Synapsin I deficiency results in the structural change in the presynaptic terminals in the murine nervous system. Takei, Y., Harada, A., Takeda, S., Kobayashi, K., Terada, S., Noda, T., Takahashi, T., Hirokawa, N. J. Cell Biol. (1995) [Pubmed]
  17. Transgenic activation of Ras in neurons promotes hypertrophy and protects from lesion-induced degeneration. Heumann, R., Goemans, C., Bartsch, D., Lingenhöhl, K., Waldmeier, P.C., Hengerer, B., Allegrini, P.R., Schellander, K., Wagner, E.F., Arendt, T., Kamdem, R.H., Obst-Pernberg, K., Narz, F., Wahle, P., Berns, H. J. Cell Biol. (2000) [Pubmed]
  18. Impairment of synaptic vesicle clustering and of synaptic transmission, and increased seizure propensity, in synapsin I-deficient mice. Li, L., Chin, L.S., Shupliakov, O., Brodin, L., Sihra, T.S., Hvalby, O., Jensen, V., Zheng, D., McNamara, J.O., Greengard, P. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  19. Synapsins regulate use-dependent synaptic plasticity in the calyx of Held by a Ca2+/calmodulin-dependent pathway. Sun, J., Bronk, P., Liu, X., Han, W., Südhof, T.C. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  20. Absence of synapsin I and II is accompanied by decreases in vesicular transport of specific neurotransmitters. Bogen, I.L., Boulland, J.L., Mariussen, E., Wright, M.S., Fonnum, F., Kao, H.T., Walaas, S.I. J. Neurochem. (2006) [Pubmed]
  21. Regulated appearance of NMDA receptor subunits and channel functions during in vitro neuronal differentiation. Jelitai, M., Schlett, K., Varju, P., Eisel, U., Madarász, E. J. Neurobiol. (2002) [Pubmed]
  22. Decrease in phorbol ester-induced potentiation of noradrenaline release in synapsin I-deficient mice. Walaas, S.I., Hilfiker, S., Li, L., Chin, L.S., Greengard, P. Synapse (2000) [Pubmed]
  23. Production of monoclonal antibodies against neurofilament-associated proteins: demonstration of association with neurofilaments by a coimmunoprecipitation method. Starr, R., Xiao, J., Monteiro, M.J. J. Neurochem. (1995) [Pubmed]
  24. Amelin: a 4.1-related spectrin-binding protein found in neuronal cell bodies and dendrites. Krebs, K.E., Zagon, I.S., Goodman, S.R. J. Neurosci. (1987) [Pubmed]
  25. Synapsin and synaptic vesicle protein expression during embryonic and post-natal lens fiber cell differentiation. Frederikse, P.H., Yun, E., Kao, H.T., Zigler, J.S., Sun, Q., Qazi, A.S. Mol. Vis. (2004) [Pubmed]
  26. Cyclin-dependent kinase 5 promotes insulin exocytosis. Lilja, L., Yang, S.N., Webb, D.L., Juntti-Berggren, L., Berggren, P.O., Bark, C. J. Biol. Chem. (2001) [Pubmed]
  27. Regulation of insulin secretion by overexpression of Ca2+/calmodulin-dependent protein kinase II in insulinoma MIN6 cells. Tabuchi, H., Yamamoto, H., Matsumoto, K., Ebihara, K., Takeuchi, Y., Fukunaga, K., Hiraoka, H., Sasaki, Y., Shichiri, M., Miyamoto, E. Endocrinology (2000) [Pubmed]
  28. Valproate regulates GSK-3-mediated axonal remodeling and synapsin I clustering in developing neurons. Hall, A.C., Brennan, A., Goold, R.G., Cleverley, K., Lucas, F.R., Gordon-Weeks, P.R., Salinas, P.C. Mol. Cell. Neurosci. (2002) [Pubmed]
  29. Ca2+/calmodulin-dependent protein kinase II and synapsin I-like protein in mouse insulinoma MIN6 cells. Matsumoto, K., Fukunaga, K., Miyazaki, J., Shichiri, M., Miyamoto, E. Endocrinology (1995) [Pubmed]
  30. Synapsin III: developmental expression, subcellular localization, and role in axon formation. Ferreira, A., Kao, H.T., Feng, J., Rapoport, M., Greengard, P. J. Neurosci. (2000) [Pubmed]
  31. Synapse formation and establishment of neuronal polarity by P19 embryonic carcinoma cells and embryonic stem cells. Finley, M.F., Kulkarni, N., Huettner, J.E. J. Neurosci. (1996) [Pubmed]
  32. PrPC directly interacts with proteins involved in signaling pathways. Spielhaupter, C., Schätzl, H.M. J. Biol. Chem. (2001) [Pubmed]
  33. Synaptic vesicle recycling in synapsin I knock-out mice. Ryan, T.A., Li, L., Chin, L.S., Greengard, P., Smith, S.J. J. Cell Biol. (1996) [Pubmed]
  34. Comparison of immunolocalization patterns for the synaptic vesicle proteins p65 and synapsin I in macaque monkey retina. Koontz, M.A., Hendrickson, A.E. Synapse (1993) [Pubmed]
 
WikiGenes - Universities