The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

metG  -  methionyl-tRNA synthetase

Escherichia coli O157:H7 str. Sakai

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of ECs2920

 

High impact information on ECs2920

  • Screening of a saturation mutagenesis library of the E. coli methionyl-tRNA synthetase (MetRS) led to the discovery of three MetRS mutants capable of incorporating the long-chain amino acid azidonorleucine into recombinant proteins with modest efficiency [6].
  • Lysidine, a lysine-combined modified cytidine, is exclusively located at the anticodon wobble position (position 34) of eubacterial tRNA(Ile)(2) and not only converts the codon specificity from AUG to AUA, but also converts the aminoacylation specificity from recognition by methionyl-tRNA synthetase to that by isoleucyl-tRNA synthetase (IleRS) [7].
  • Multiple individual replacements at this location do not disrupt enzyme stability, indicating this segment is on the surface, as in the MetRS structure [1].
  • Homocysteine (Hcy) editing by methionyl-tRNA synthetase results in the formation of Hcy-thiolactone and initiates a pathway that has been implicated in human disease [8].
  • Upon chemical modification of the 3 Cys residues of T. thermophilus MetRS with sodium p-(hydroxymercuri)phenylsulfonate, one Zn2+ ion was released from one subunit of the molecule, as monitored with 4-(2-pyridylazo)resorcinol [9].
 

Chemical compound and disease context of ECs2920

 

Biological context of ECs2920

 

Anatomical context of ECs2920

 

Associations of ECs2920 with chemical compounds

  • Complexes with methionyl adenylate analogues illustrate the shielding by MetRS of the region joining the methionine and adenosine moieties [12].
  • In TyrRS, these residues are close to the adenylate binding site, and in MetRS to the Mg2+-ATP binding site [15].
  • Amino acid analysis indicated that the major product was an octadecapeptide cross-linked to tRNA(mMet) through lysine residue 596 in the primary sequence of MetRS [16].
  • Complete inactivation corresponded to the incorporation of 0.98 mol of AP3-PL/mol of monomeric trypsin-modified MetRS [17].
  • Primary sequence comparisons of class I aminoacyl-tRNA synthetases show that all but one member of this group of enzymes has an aspartic acid residue at the site corresponding to Asp52 in MetRS [18].
 

Other interactions of ECs2920

  • AP3-PL-labeled Lys-335 of MetRS and Lys-557 of ValRS belong to the consensus tRNA CCA-binding Lys-Met-Ser-Lys-Ser sequence [Hountondji, C., Dessen, P., & Blanquet, S. (1986) Biochimie 68, 1071-1078].(ABSTRACT TRUNCATED AT 250 WORDS)[17]
  • A series of sulfamate surrogates of methionyl and isoleucyl adenylate have been investigated as MetRS and IleRS inhibitors by modifications of the sulfamate linker and adenine moieties [19].
 

Analytical, diagnostic and therapeutic context of ECs2920

References

  1. RNA binding determinant in some class I tRNA synthetases identified by alignment-guided mutagenesis. Shepard, A., Shiba, K., Schimmel, P. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  2. Biochemical and phylogenetic analyses of methionyl-tRNA synthetase isolated from a pathogenic microorganism, Mycobacterium tuberculosis. Kim, S., Jo, Y.J., Lee, S.H., Motegi, H., Shiba, K., Sassanfar, M., Martinis, S.A. FEBS Lett. (1998) [Pubmed]
  3. General structure/function properties of microbial methionyl-tRNA synthetases. Schmitt, E., Panvert, M., Mechulam, Y., Blanquet, S. Eur. J. Biochem. (1997) [Pubmed]
  4. 3-D-QSAR study and molecular docking of methionyl-tRNA synthetase inhibitors. Kim, S.Y., Lee, J. Bioorg. Med. Chem. (2003) [Pubmed]
  5. The 2.0 A crystal structure of Thermus thermophilus methionyl-tRNA synthetase reveals two RNA-binding modules. Sugiura, I., Nureki, O., Ugaji-Yoshikawa, Y., Kuwabara, S., Shimada, A., Tateno, M., Lorber, B., Giegé, R., Moras, D., Yokoyama, S., Konno, M. Structure (2000) [Pubmed]
  6. Discovery of aminoacyl-tRNA synthetase activity through cell-surface display of noncanonical amino acids. Link, A.J., Vink, M.K., Agard, N.J., Prescher, J.A., Bertozzi, C.R., Tirrell, D.A. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  7. Structural basis for lysidine formation by ATP pyrophosphatase accompanied by a lysine-specific loop and a tRNA-recognition domain. Nakanishi, K., Fukai, S., Ikeuchi, Y., Soma, A., Sekine, Y., Suzuki, T., Nureki, O. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  8. Protective mechanisms against homocysteine toxicity: the role of bleomycin hydrolase. Zimny, J., Sikora, M., Guranowski, A., Jakubowski, H. J. Biol. Chem. (2006) [Pubmed]
  9. Chemical modification and mutagenesis studies on zinc binding of aminoacyl-tRNA synthetases. Nureki, O., Kohno, T., Sakamoto, K., Miyazawa, T., Yokoyama, S. J. Biol. Chem. (1993) [Pubmed]
  10. Proofreading and the evolution of a methyl donor function. Cyclization of methionine to S-methyl homocysteine thiolactone by Escherichia coli methionyl-tRNA synthetase. Jakubowski, H. J. Biol. Chem. (1993) [Pubmed]
  11. Identification of peptide sequences at the tRNA binding site of Escherichia coli methionyl-tRNA synthetase. Valenzuela, D., Schulman, L.H. Biochemistry (1986) [Pubmed]
  12. Use of analogues of methionine and methionyl adenylate to sample conformational changes during catalysis in Escherichia coli methionyl-tRNA synthetase. Crepin, T., Schmitt, E., Mechulam, Y., Sampson, P.B., Vaughan, M.D., Honek, J.F., Blanquet, S. J. Mol. Biol. (2003) [Pubmed]
  13. Structure and function of the C-terminal domain of methionyl-tRNA synthetase. Crepin, T., Schmitt, E., Blanquet, S., Mechulam, Y. Biochemistry (2002) [Pubmed]
  14. Molecular mimicry in translational control of E. coli threonyl-tRNA synthetase gene. Competitive inhibition in tRNA aminoacylation and operator-repressor recognition switch using tRNA identity rules. Romby, P., Brunel, C., Caillet, J., Springer, M., Grunberg-Manago, M., Westhof, E., Ehresmann, C., Ehresmann, B. Nucleic Acids Res. (1992) [Pubmed]
  15. Structural homology in the amino-terminal domains of two aminoacyl-tRNA synthetases. Blow, D.M., Bhat, T.N., Metcalfe, A., Risler, J.L., Brunie, S., Zelwer, C. J. Mol. Biol. (1983) [Pubmed]
  16. Covalent coupling of the variable loop of the elongator methionine tRNA to a specific lysine residue in Escherichia coli methionyl-tRNA synthetase. Leon, O., Schulman, L.O. Biochemistry (1987) [Pubmed]
  17. Affinity labeling of aminoacyl-tRNA synthetases with adenosine triphosphopyridoxal: probing the Lys-Met-Ser-Lys-Ser signature sequence as the ATP-binding site in Escherichia coli methionyl-and valyl-tRNA synthetases. Hountondji, C., Schmitter, J.M., Fukui, T., Tagaya, M., Blanquet, S. Biochemistry (1990) [Pubmed]
  18. Activation of methionine by Escherichia coli methionyl-tRNA synthetase. Ghosh, G., Pelka, H., Schulman, L.H., Brunie, S. Biochemistry (1991) [Pubmed]
  19. N-Alkoxysulfamide, N-hydroxysulfamide, and sulfamate analogues of methionyl and isoleucyl adenylates as inhibitors of methionyl-tRNA and isoleucyl-tRNA synthetases. Lee, J., Kim, S.E., Lee, J.Y., Kim, S.Y., Kang, S.U., Seo, S.H., Chun, M.W., Kang, T., Choi, S.Y., Kim, H.O. Bioorg. Med. Chem. Lett. (2003) [Pubmed]
 
WikiGenes - Universities