The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Mytilus

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Mytilus

 

High impact information on Mytilus

  • In contrast to fish, blue mussels (Mytilus edulus) collected during the DA outbreak contained no DA or only trace amounts [6].
  • In invertebrate organisms such as the mollusc Mytilus edulis, Met-enkephalin triggers inflammatory responses by inducing morphological changes, directed migration and aggregation of haemocytes [7].
  • Opioid inhibition of dopamine release from nervous tissue of Mytilus edulis and Octopus bimaculatus [8].
  • Treatment of the mussel Mytilus edulis with 6-hydroxydopamine or with alpha-methyl-p-tyrosine decreased dopamine and increased serotonin in the nervous system [9].
  • Amino acid analysis of mfp-1 extracted from successive foot sections of Mytilus galloprovincialis reveals a post-translationally mediated gradient with highest Dopa levels present in mfp-1 from the accessory gland near the tip of the foot decreasing gradually toward the base [10].
 

Chemical compound and disease context of Mytilus

 

Biological context of Mytilus

  • Innate immunity. Isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusc, Mytilus edulis [16].
  • The data from this study, together with data from Mytilus edulis and Metridium senile on temperature-dependent kinetic variation among PGI allozymes, form a consistent picture of natural selection influencing the clinal variation of alleles at this locus in these three phylogenetically distant organisms [17].
  • To test hypotheses of the molecular evolution of both mtDNA genomes, 50 nucleotide sequences were obtained for 396 bp of the COIII gene of European populations of Mytilus edulis and the Atlantic and Mediterranean forms of M. galloprovincialis [18].
  • Analysis of promoter regions shows clear homologies among Mytilus H1 genes, sea urchin H1 genes, and vertebrate differentiation-specific H1 subtypes (H5 and H1(o)), all having an H4 box motif in common [19].
  • In this work we provide evidence for a polyadenylation signature in the Mytilus "orphon" H1 genes similar to the polyadenylation characteristic of RI H1 genes [20].
 

Anatomical context of Mytilus

 

Associations of Mytilus with chemical compounds

  • Isolation and characterization of the carbon-phosphorus bond-forming enzyme phosphoenolpyruvate mutase from the mollusk Mytilus edulis [26].
  • Mfp-1 (Mytilus foot protein-1) is a conspicuous component of the protective outer cuticle of byssal threads given its high 3,4-dihydroxyphenylalanine (Dopa) content at 10-15 mol % [10].
  • Purification and characterization of hydroxyindole oxidase from the gills of Mytilus edulis [27].
  • Evidence for a repeating 3,4-dihydroxyphenylalanine- and hydroxyproline-containing decapeptide in the adhesive protein of the mussel, Mytilus edulis L [28].
  • Along with proteins of the histone H1 class, the protein also shows cross-reactivity and sequence identity, in its NH2-terminal region, with the major protamine-like protein component of Mytilus sperm: PL-III (phi 1), of smaller molecular mass [29].
 

Gene context of Mytilus

  • 3. Both human and Mytilus immunocytes appear to have specific CRF receptors [30].
  • Furthermore, the induction of IL-1 by opioids has also been identified in the invertebrate Mytilus, indicating the evolutionary conservation of this relationship (137) [31].
  • Tyrosine kinase-mediated cell signalling in the activation of Mytilus hemocytes: possible role of STAT-like proteins [32].
  • Multi-drug resistance (MDR) in MCF7 breast cancer cells and multi-xenobiotic resistance (MXR) in mussel (Mytilus edulis) blood cells (MBC) are well known mechanisms that contribute to the decrease in intracellular concentrations of many unrelated but cytotoxic compounds [33].
  • We show that Mytilus hemocytes respond to LPS in a fashion similar to vertebrate monocytes and macrophages and that these responses are inhibited by antibodies to TNF and/or IL-1 [34].
 

Analytical, diagnostic and therapeutic context of Mytilus

References

  1. Reversible inhibition of acetylcholine contracture of molluscan smooth muscle by heavy metals: correlation to Ca++ and metal content. Raffa, R.B., Bianchi, C.P., Narayan, S.R. J. Pharmacol. Exp. Ther. (1987) [Pubmed]
  2. Enkephalin-like immunoreactivity in the pedal ganglion of Mytilus edulis (Bivalvia) and its proximity to dopamine-containing structures. Stefano, G.B., Martin, R. Cell Tissue Res. (1983) [Pubmed]
  3. Relationship between domoic acid levels in the blue mussel (Mytilus edulis) and toxicity in mice. Grimmelt, B., Nijjar, M.S., Brown, J., Macnair, N., Wagner, S., Johnson, G.R., Amend, J.F. Toxicon (1990) [Pubmed]
  4. Implication of guanosine 3',5'-cyclic monophosphate, adenosine 3',5'-cyclic monophosphate, adenosine 5'-mono-, di- and triphosphate and fructose-2,6-bisphosphate in the regulation of the glycolytic pathway in hypoxic/anoxic mussel, Mytilus galloprovincialis. Díaz-Enrich, M.J., Ramos-Martínez, J.I., Ibarguren, I. Mol. Cell. Biochem. (2002) [Pubmed]
  5. Absence of histopathological response to cadmium in gill and digestive diverticula of the mussel, Mytilus edulis. Giraud, A.S., Webster, L.K., Fabris, J.G., Collett, L.C., Yeomans, N.D. Bulletin of environmental contamination and toxicology. (1986) [Pubmed]
  6. Mortality of sea lions along the central California coast linked to a toxic diatom bloom. Scholin, C.A., Gulland, F., Doucette, G.J., Benson, S., Busman, M., Chavez, F.P., Cordaro, J., DeLong, R., De Vogelaere, A., Harvey, J., Haulena, M., Lefebvre, K., Lipscomb, T., Loscutoff, S., Lowenstine, L.J., Marin, R., Miller, P.E., McLellan, W.A., Moeller, P.D., Powell, C.L., Rowles, T., Silvagni, P., Silver, M., Spraker, T., Trainer, V., Van Dolah, F.M. Nature (2000) [Pubmed]
  7. Downregulation of enkephalin-mediated inflammatory responses by CD10/neutral endopeptidase 24.11. Shipp, M.A., Stefano, G.B., D'Adamio, L., Switzer, S.N., Howard, F.D., Sinisterra, J., Scharrer, B., Reinherz, E.L. Nature (1990) [Pubmed]
  8. Opioid inhibition of dopamine release from nervous tissue of Mytilus edulis and Octopus bimaculatus. Stefano, G.B., Hall, B., Makman, M.H., Dvorkin, B. Science (1981) [Pubmed]
  9. Dopaminergic agents: influence on serotonin in the molluscan nervous system. Stefano, G.B., Catapane, E., Aiello, E. Science (1976) [Pubmed]
  10. Mapping chemical gradients within and along a fibrous structural tissue, mussel byssal threads. Sun, C., Waite, J.H. J. Biol. Chem. (2005) [Pubmed]
  11. Nickel inhibition of calcium release from subsarcolemmal calcium stores of molluscan smooth muscle. Wang, Z., Bianchi, C.P., Narayan, S.R. J. Pharmacol. Exp. Ther. (1984) [Pubmed]
  12. Toxicity of domoic acid in the marine mussel Mytilus edulis. Dizer, H., Fischer, B., Harabawy, A.S., Hennion, M.C., Hansen, P.D. Aquat. Toxicol. (2001) [Pubmed]
  13. Toxicity of tributyltin in the marine mollusc Mytilus edulis. Hagger, J.A., Depledge, M.H., Galloway, T.S. Mar. Pollut. Bull. (2005) [Pubmed]
  14. A combination fluorescence assay and Folin-Ciocalteau phenol reagent assay for the detection of paralytic shellfish poisons. Mosley, S., Ikawa, M., Sasner, J.J. Toxicon (1985) [Pubmed]
  15. Diet restriction induced autophagy: a lysosomal protective system against oxidative- and pollutant-stress and cell injury. Moore, M.N. Mar. Environ. Res. (2004) [Pubmed]
  16. Innate immunity. Isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusc, Mytilus edulis. Charlet, M., Chernysh, S., Philippe, H., Hetru, C., Hoffmann, J.A., Bulet, P. J. Biol. Chem. (1996) [Pubmed]
  17. Temperature-dependent kinetic variation among phosphoglucose isomerase allozymes from the wing-polymorphic water strider, Limnoporus canaliculatus. Zera, A.J. Mol. Biol. Evol. (1987) [Pubmed]
  18. Nonneutral evolution and differential mutation rate of gender-associated mitochondrial DNA lineages in the marine mussel Mytilus. Quesada, H., Warren, M., Skibinski, D.O. Genetics (1998) [Pubmed]
  19. Molecular and evolutionary analysis of mussel histone genes (Mytilus spp.): possible evidence of an "orphon origin" for H1 gistone genes. Eirín-López, J.M., González-Tizón, A.M., Martinez, A., Méndez, J. J. Mol. Evol. (2002) [Pubmed]
  20. Common evolutionary origin and birth-and-death process in the replication-independent histone H1 isoforms from vertebrate and invertebrate genomes. Eirín-López, J.M., Ruiz, M.F., González-Tizón, A.M., Martínez, A., Ausió, J., Sánchez, L., Méndez, J. J. Mol. Evol. (2005) [Pubmed]
  21. Pharmacological evidence for the modulation of monoamine release by adenosine in the invertebrate nervous system. Barraco, R.A., Stefano, G.B. J. Neurochem. (1990) [Pubmed]
  22. High affinity dopamine binding to mouse thymocytes and Mytilus edulis (Bivalvia) hemocytes. Stefano, G.B., Zhao, X.H., Bailey, D., Metlay, M., Leung, M.K. J. Neuroimmunol. (1989) [Pubmed]
  23. The effects of temperature acclimation on monoamine metabolism. Stefano, G.B., Catapane, E.J. J. Pharmacol. Exp. Ther. (1977) [Pubmed]
  24. Degradation of Met-enkephalin by hemolymph peptidases in Mytilus edulis. Leung, M.K., Le, S., Houston, S., Stefano, G.B. Cell. Mol. Neurobiol. (1992) [Pubmed]
  25. Denervation produces supersensitivity of a serotonergically innervated structure. Catapane, E.J., Collins, E.D., Marcano, J.A., Stefano, G.B. Eur. J. Pharmacol. (1980) [Pubmed]
  26. Isolation and characterization of the carbon-phosphorus bond-forming enzyme phosphoenolpyruvate mutase from the mollusk Mytilus edulis. Kim, A., Kim, J., Martin, B.M., Dunaway-Mariano, D. J. Biol. Chem. (1998) [Pubmed]
  27. Purification and characterization of hydroxyindole oxidase from the gills of Mytilus edulis. Kampa, L., Peisach, J. J. Biol. Chem. (1980) [Pubmed]
  28. Evidence for a repeating 3,4-dihydroxyphenylalanine- and hydroxyproline-containing decapeptide in the adhesive protein of the mussel, Mytilus edulis L. Waite, J.H. J. Biol. Chem. (1983) [Pubmed]
  29. Sequence and characterization of a sperm-specific histone H1-like protein of Mytilus californianus. Carlos, S., Jutglar, L., Borrell, I., Hunt, D.F., Ausio, J. J. Biol. Chem. (1993) [Pubmed]
  30. Corticotropin-releasing factor-induced immunosuppression in human and invertebrate immunocytes. Smith, E.M., Hughes, T.K., Cadet, P., Stefano, G.B. Cell. Mol. Neurobiol. (1992) [Pubmed]
  31. The role of endogenous opioids and their receptors in the immune system. Carr, D.J. Proc. Soc. Exp. Biol. Med. (1991) [Pubmed]
  32. Tyrosine kinase-mediated cell signalling in the activation of Mytilus hemocytes: possible role of STAT-like proteins. Canesi, L., Betti, M., Ciacci, C., Citterio, B., Pruzzo, C., Gallo, G. Biol. Cell (2003) [Pubmed]
  33. Cell responses to xenobiotics: comparison of MCF7 multi-drug- and mussel blood cell multi-xenobiotic-defense mechanisms. Marin, M., Legros, H., Poret, A., Leboulenger, F., Le Foll, F. Mar. Environ. Res. (2004) [Pubmed]
  34. LPS stimulated invertebrate hemocytes: a role for immunoreactive TNF and IL-1. Hughes, T.K., Smith, E.M., Barnett, J.A., Charles, R., Stefano, G.B. Dev. Comp. Immunol. (1991) [Pubmed]
  35. Measurement of adenosine 3',5'-cyclic monophosphate and guanosine 3', 5'-cyclic monophosphate in mussel (Mytilus galloprovincialis lmk.) by high-performance liquid chromatography with diode array detection. Díaz Enrich, M.J., Villamarín, J.A., Ramos Martínez, J.I., Ibarguren, I. Anal. Biochem. (2000) [Pubmed]
  36. Circatidal variation in epithelial cell proliferation in the mussel digestive gland and stomach. Zaldibar, B., Cancio, I., Marigómez, I. Cell Tissue Res. (2004) [Pubmed]
  37. Comparison of supercritical fluid extraction and Soxhlet extraction for the determination of polychlorinated biphenyls in environmental matrix standard reference materials. Schantz, M.M., Bøwadt, S., Benner, B.A., Wise, S.A., Hawthorne, S.B. Journal of chromatography. A. (1998) [Pubmed]
  38. The validity of two HPLC methods and a colorimetric PP2A assay related to the mouse bioassay in quantification of diarrhetic toxins in blue mussels (Mytilus edulis). Ramstad, H., Shen, J.L., Larsen, S., Aune, T. Toxicon (2001) [Pubmed]
 
WikiGenes - Universities