The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Tombusvirus


High impact information on Tombusvirus


Chemical compound and disease context of Tombusvirus


Biological context of Tombusvirus


Gene context of Tombusvirus

  • Mutations in either p33 or p92 within the short regions involved in p33:p33 and p33:p92 interactions decreased the replication of a TBSV defective interfering RNA in yeast, a model host, supporting the significance of these protein interactions in tombusvirus replication [20].
  • Uncoupled expression of p33 and p92 permits amplification of tomato bushy stunt virus RNAs [21].
  • This study on Tomato bushy stunt virus identified and defined three previously unknown regulatory sequences involved in RNA accumulation that are located within the 3'-proximal nested movement protein genes p22 and p19 [22].
  • In particular, systemic invasion depended very much, although not exclusively, on the type of protein that coated progeny viral RNA, suggesting a role of the capsid protein in the long-distance movement of tombusvirus infections [23].
  • Hybrid cDNA clones were constructed by fusing the coat protein-encoding gene and/or the 3'-terminal region (including the 22- and 19-kDa protein-encoding genes) derived from a clone of artichoke mottled crinkle tombusvirus to the 5'-terminal region of a full-length clone of cymbidium ringspot tombusvirus [23].


  1. Analysis of the structure of a common cold virus, human rhinovirus 14, refined at a resolution of 3.0 A. Arnold, E., Rossmann, M.G. J. Mol. Biol. (1990) [Pubmed]
  2. Development of Bean pod mottle virus-based vectors for stable protein expression and sequence-specific virus-induced gene silencing in soybean. Zhang, C., Ghabrial, S.A. Virology (2006) [Pubmed]
  3. Heterologous RNA replication enhancer stimulates in vitro RNA synthesis and template-switching by the carmovirus, but not by the tombusvirus, RNA-dependent RNA polymerase: implication for modular evolution of RNA viruses. Cheng, C.P., Panavas, T., Luo, G., Nagy, P.D. Virology (2005) [Pubmed]
  4. Yeast as a model host to study replication and recombination of defective interfering RNA of Tomato bushy stunt virus. Panavas, T., Nagy, P.D. Virology (2003) [Pubmed]
  5. The three-dimensional distribution of RNA and protein in the interior of tomato bushy stunt virus: a neutron low-resolution single-crystal diffraction study. Timmins, P.A., Wild, D., Witz, J. Structure (1994) [Pubmed]
  6. An RNA activator of subgenomic mRNA1 transcription in tomato bushy stunt virus. Choi, I.R., White, K.A. J. Biol. Chem. (2002) [Pubmed]
  7. Biological relevance of a stable biochemical interaction between the tombusvirus-encoded P19 and short interfering RNAs. Omarov, R., Sparks, K., Smith, L., Zindovic, J., Scholthof, H.B. J. Virol. (2006) [Pubmed]
  8. Proteomics analysis of the tombusvirus replicase: Hsp70 molecular chaperone is associated with the replicase and enhances viral RNA replication. Serva, S., Nagy, P.D. J. Virol. (2006) [Pubmed]
  9. Role of an internal and two 3'-terminal RNA elements in assembly of tombusvirus replicase. Panaviene, Z., Panavas, T., Nagy, P.D. J. Virol. (2005) [Pubmed]
  10. Divalent cation sites in tomato bushy stunt virus. Difference maps at 2-9 A resolution. Hogle, J., Kirchhausen, T., Harrison, S.C. J. Mol. Biol. (1983) [Pubmed]
  11. Structural comparisons of some small spherical plant viruses. Rossmann, M.G., Abad-Zapatero, C., Murthy, M.R., Liljas, L., Jones, T.A., Strandberg, B. J. Mol. Biol. (1983) [Pubmed]
  12. Analysis of tombusvirus revertants to identify essential amino acid residues within RNA-dependent RNA polymerase motifs. Boonrod, K., Chotewutmontri, S., Galetzka, D., Krczal, G. J. Gen. Virol. (2005) [Pubmed]
  13. Glycine mottle virus, a possible member of the tombusvirus group. Behncken, G.M., Dale, J.L. Intervirology (1984) [Pubmed]
  14. Inhibition of tomato bushy stunt virus infection using a quercetagetin flavonoid isolated from Centaurea rupestris L. Rusak, G., Krajacić, M., Plese, N. Antiviral Res. (1997) [Pubmed]
  15. Mechanism of stimulation of plus-strand synthesis by an RNA replication enhancer in a tombusvirus. Panavas, T., Nagy, P.D. J. Virol. (2005) [Pubmed]
  16. Characterization of the RNA-binding domains in the replicase proteins of tomato bushy stunt virus. Rajendran, K.S., Nagy, P.D. J. Virol. (2003) [Pubmed]
  17. An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Voinnet, O., Rivas, S., Mestre, P., Baulcombe, D. Plant J. (2003) [Pubmed]
  18. Relocalization of nuclear ALY proteins to the cytoplasm by the tomato bushy stunt virus P19 pathogenicity protein. Uhrig, J.F., Canto, T., Marshall, D., MacFarlane, S.A. Plant Physiol. (2004) [Pubmed]
  19. Genetic dissection of tomato bushy stunt virus p19-protein-mediated host-dependent symptom induction and systemic invasion. Chu, M., Desvoyes, B., Turina, M., Noad, R., Scholthof, H.B. Virology (2000) [Pubmed]
  20. Interaction between the replicase proteins of Tomato bushy stunt virus in vitro and in vivo. Rajendran, K.S., Nagy, P.D. Virology (2004) [Pubmed]
  21. Uncoupled expression of p33 and p92 permits amplification of tomato bushy stunt virus RNAs. Oster, S.K., Wu, B., White, K.A. J. Virol. (1998) [Pubmed]
  22. Tomato bushy stunt virus genomic RNA accumulation is regulated by interdependent cis-acting elements within the movement protein open reading frames. Park, J.W., Desvoyes, B., Scholthof, H.B. J. Virol. (2002) [Pubmed]
  23. Consequences of gene transfer between distantly related tombusviruses. Burgyán, J., Tavazza, M., Dalmay, T., Lucioli, A., Balázs, E. Gene (1993) [Pubmed]
WikiGenes - Universities