The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Rhinovirus

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Rhinovirus

 

High impact information on Rhinovirus

  • Structure of human rhinovirus 3C protease reveals a trypsin-like polypeptide fold, RNA-binding site, and means for cleaving precursor polyprotein [6].
  • The ICAM-1 binding site is distinct from those recognized by LFA-1, Mac-1, and the human major-type rhinoviruses [7].
  • Plasmodium falciparum-infected erythrocytes bind ICAM-1 at a site distinct from LFA-1, Mac-1, and human rhinovirus [7].
  • The arrangement of the immunoglobulin-like domains of ICAM-1 and the binding sites for LFA-1 and rhinovirus [8].
  • ICAM-1 sequences important to binding LFA-1, rhinovirus, and four monoclonal antibodies were identified through the characterization of chimeric ICAM-1 molecules and mutants [8].
 

Chemical compound and disease context of Rhinovirus

 

Biological context of Rhinovirus

 

Anatomical context of Rhinovirus

 

Gene context of Rhinovirus

 

Analytical, diagnostic and therapeutic context of Rhinovirus

References

  1. Poliovirus can enter and infect mammalian cells by way of an intercellular adhesion molecule 1 pathway. Selinka, H.C., Zibert, A., Wimmer, E. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  2. Site-directed mutagenesis suggests close functional relationship between a human rhinovirus 3C cysteine protease and cellular trypsin-like serine proteases. Cheah, K.C., Leong, L.E., Porter, A.G. J. Biol. Chem. (1990) [Pubmed]
  3. Cleavage specificity on synthetic peptide substrates of human rhinovirus 2 proteinase 2A. Sommergruber, W., Ahorn, H., Zöphel, A., Maurer-Fogy, I., Fessl, F., Schnorrenberg, G., Liebig, H.D., Blaas, D., Kuechler, E., Skern, T. J. Biol. Chem. (1992) [Pubmed]
  4. Mapping of functional domains in eukaryotic protein synthesis initiation factor 4G (eIF4G) with picornaviral proteases. Implications for cap-dependent and cap-independent translational initiation. Lamphear, B.J., Kirchweger, R., Skern, T., Rhoads, R.E. J. Biol. Chem. (1995) [Pubmed]
  5. Interaction of coxsackievirus A21 with its cellular receptor, ICAM-1. Xiao, C., Bator, C.M., Bowman, V.D., Rieder, E., He, Y., Hébert, B., Bella, J., Baker, T.S., Wimmer, E., Kuhn, R.J., Rossmann, M.G. J. Virol. (2001) [Pubmed]
  6. Structure of human rhinovirus 3C protease reveals a trypsin-like polypeptide fold, RNA-binding site, and means for cleaving precursor polyprotein. Matthews, D.A., Smith, W.W., Ferre, R.A., Condon, B., Budahazi, G., Sisson, W., Villafranca, J.E., Janson, C.A., McElroy, H.E., Gribskov, C.L. Cell (1994) [Pubmed]
  7. Plasmodium falciparum-infected erythrocytes bind ICAM-1 at a site distinct from LFA-1, Mac-1, and human rhinovirus. Ockenhouse, C.F., Betageri, R., Springer, T.A., Staunton, D.E. Cell (1992) [Pubmed]
  8. The arrangement of the immunoglobulin-like domains of ICAM-1 and the binding sites for LFA-1 and rhinovirus. Staunton, D.E., Dustin, M.L., Erickson, H.P., Springer, T.A. Cell (1990) [Pubmed]
  9. A soluble form of intercellular adhesion molecule-1 inhibits rhinovirus infection. Marlin, S.D., Staunton, D.E., Springer, T.A., Stratowa, C., Sommergruber, W., Merluzzi, V.J. Nature (1990) [Pubmed]
  10. Architecture of the invisible. Thomas, J.M. Nature (1993) [Pubmed]
  11. A common cold virus, rhinovirus 16, potentiates airway inflammation after segmental antigen bronchoprovocation in allergic subjects. Calhoun, W.J., Dick, E.C., Schwartz, L.B., Busse, W.W. J. Clin. Invest. (1994) [Pubmed]
  12. The activity of enviroxime against rhinovirus infection in man. Phillpotts, R.J., Jones, R.W., Delong, D.C., Reed, S.E., Wallace, J., Tyrrell, D.A. Lancet (1981) [Pubmed]
  13. Management of suspected acute viral upper respiratory tract infection in children with intranasal sodium cromoglicate: a randomised controlled trial. Butler, C.C., Robling, M., Prout, H., Hood, K., Kinnersley, P. Lancet (2002) [Pubmed]
  14. Identification of monoclonal antibody epitopes and critical residues for rhinovirus binding in domain 1 of intercellular adhesion molecule 1. McClelland, A., deBear, J., Yost, S.C., Meyer, A.M., Marlor, C.W., Greve, J.M. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  15. Polyadenylate sequences of human rhinovirus and poliovirus RNA and cordycepin sensitivity of virus replication. Nair, C.N., Panicali, D.L. J. Virol. (1976) [Pubmed]
  16. In vitro synthesis of an infectious RNA from cDNA clones of human rhinovirus type 14. Mizutani, S., Colonno, R.J. J. Virol. (1985) [Pubmed]
  17. The domain structure of ICAM-1 and the kinetics of binding to rhinovirus. Casasnovas, J.M., Bickford, J.K., Springer, T.A. J. Virol. (1998) [Pubmed]
  18. Rhinovirus and respiratory syncytial virus in wheezing children requiring emergency care. IgE and eosinophil analyses. Rakes, G.P., Arruda, E., Ingram, J.M., Hoover, G.E., Zambrano, J.C., Hayden, F.G., Platts-Mills, T.A., Heymann, P.W. Am. J. Respir. Crit. Care Med. (1999) [Pubmed]
  19. A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Staunton, D.E., Merluzzi, V.J., Rothlein, R., Barton, R., Marlin, S.D., Springer, T.A. Cell (1989) [Pubmed]
  20. Infection of a human respiratory epithelial cell line with rhinovirus. Induction of cytokine release and modulation of susceptibility to infection by cytokine exposure. Subauste, M.C., Jacoby, D.B., Richards, S.M., Proud, D. J. Clin. Invest. (1995) [Pubmed]
  21. Protein factor requirements of the Apaf-1 internal ribosome entry segment: roles of polypyrimidine tract binding protein and upstream of N-ras. Mitchell, S.A., Brown, E.C., Coldwell, M.J., Jackson, R.J., Willis, A.E. Mol. Cell. Biol. (2001) [Pubmed]
  22. Rhinovirus infection induces expression of its own receptor intercellular adhesion molecule 1 (ICAM-1) via increased NF-kappaB-mediated transcription. Papi, A., Johnston, S.L. J. Biol. Chem. (1999) [Pubmed]
  23. An antibody fragment from a phage display library competes for ligand binding to the low density lipoprotein receptor family and inhibits rhinovirus infection. Hodits, R.A., Nimpf, J., Pfistermueller, D.M., Hiesberger, T., Schneider, W.J., Vaughan, T.J., Johnson, K.S., Haumer, M., Kuechler, E., Winter, G. J. Biol. Chem. (1995) [Pubmed]
  24. The structure of the two amino-terminal domains of human ICAM-1 suggests how it functions as a rhinovirus receptor and as an LFA-1 integrin ligand. Bella, J., Kolatkar, P.R., Marlor, C.W., Greve, J.M., Rossmann, M.G. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  25. Very-low-density lipoprotein receptor fragment shed from HeLa cells inhibits human rhinovirus infection. Marlovits, T.C., Abrahamsberg, C., Blaas, D. J. Virol. (1998) [Pubmed]
  26. Bidirectional interactions between viral respiratory illnesses and cytokine responses in the first year of life. Gern, J.E., Brooks, G.D., Meyer, P., Chang, A., Shen, K., Evans, M.D., Tisler, C., Dasilva, D., Roberg, K.A., Mikus, L.D., Rosenthal, L.A., Kirk, C.J., Shult, P.A., Bhattacharya, A., Li, Z., Gangnon, R., Lemanske, R.F. J. Allergy Clin. Immunol. (2006) [Pubmed]
  27. Vascular endothelial growth factor-mediated induction of angiogenesis by human rhinoviruses. Psarras, S., Volonaki, E., Skevaki, C.L., Xatzipsalti, M., Bossios, A., Pratsinis, H., Tsigkos, S., Gourgiotis, D., Constantopoulos, A.G., Papapetropoulos, A., Saxoni-Papageorgiou, P., Papadopoulos, N.G. J. Allergy Clin. Immunol. (2006) [Pubmed]
  28. Human rhinovirus attenuates the type I interferon response by disrupting activation of interferon regulatory factor 3. Peng, T., Kotla, S., Bumgarner, R.E., Gustin, K.E. J. Virol. (2006) [Pubmed]
  29. The role of histamine in allergic rhinitis. Naclerio, R.M. J. Allergy Clin. Immunol. (1990) [Pubmed]
  30. Many rhinovirus serotypes share the same cellular receptor. Abraham, G., Colonno, R.J. J. Virol. (1984) [Pubmed]
  31. Structural and virological studies of the stages of virus replication that are affected by antirhinovirus compounds. Zhang, Y., Simpson, A.A., Ledford, R.M., Bator, C.M., Chakravarty, S., Skochko, G.A., Demenczuk, T.M., Watanyar, A., Pevear, D.C., Rossmann, M.G. J. Virol. (2004) [Pubmed]
 
WikiGenes - Universities