The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Haloarcula

  • We searched for ribose zipper tertiary interactions in the crystal structures of the large ribosomal subunit RNAs of Haloarcula marismortui and Deinococcus radiodurans, and the small ribosomal subunit RNA of Thermus thermophilus and identified a total of 97 ribose zippers [1].

High impact information on Haloarcula

  • Crystal structures of the Haloarcula marismortui large ribosomal subunit complexed with the 16-membered macrolide antibiotics carbomycin A, spiramycin, and tylosin and a 15-membered macrolide, azithromycin, show that they bind in the polypeptide exit tunnel adjacent to the peptidyl transferase center [2].
  • Protein thermal dynamics was evaluated by neutron scattering for halophilic malate dehydrogenase from Haloarcula marismortui (HmMalDH) and BSA under different solvent conditions [3].
  • Recently, a novel tetrahedral-shaped dodecameric 480-kDa aminopeptidase complex (TET) has been described in Haloarcula marismortui that differs from the known ring- or barrel-shaped self-compartmentalizing proteases [4].
  • We isolated a protein, P45, from the extreme halophilic archaeon Haloarcula marismortui, which displays molecular chaperone activities in vitro [5].
  • The archaeon Haloarcula marismortui has few modifications in the central parts of its 23S ribosomal RNA [6].

Biological context of Haloarcula


Associations of Haloarcula with chemical compounds

  • Isolated 50 S ribosomal subunits from the halophilic archaebacterium Haloarcula marismortui were treated in situ with the homobifunctional and cleavable crosslinking reagent dithiobis(succinimidyl propionate) (12 A) [9].
  • Malate dehydrogenase from Haloarcula marisomortui (hMDH) is active, soluble and mildly unstable in an unusually wide range of salt conditions and temperatures, making it a particularly interesting model for the study of solvent effects on protein stability [10].
  • The corresponding adenosine residues in the Haloarcula marismortui 50 S ribosomal subunit form a dinucleotide platform, which is quite different from the motif seen in solution [11].
  • Structures of anisomycin, chloramphenicol, sparsomycin, blasticidin S, and virginiamycin M bound to the large ribosomal subunit of Haloarcula marismortui have been determined at 3.0A resolution [12].
  • Purification, characterization, and genetic analysis of Cu-containing dissimilatory nitrite reductase from a denitrifying halophilic archaeon, Haloarcula marismortui [13].

Gene context of Haloarcula

  • The gene encoding 37 kDa LRP/p40 has been identified in a variety of species including the sea urchin Urechis caupo, Chlorohydra viridissima, the archaebacterium Haloarcula marismortui, the yeast Saccharomyces cerevisiae as well as in mammals where it is highly conserved [14].
  • The Oligomeric states of Haloarcula marismortui malate dehydrogenase are modulated by solvent components as shown by crystallographic and biochemical studies [15].
  • The C-terminal domain has a protein fold similar to human small nuclear ribonucleoprotein Sm D3 and Haloarcula marismortui ribosomal protein L21E [16].
  • This protein/RNA interface simulates the interaction of L5 with 23S rRNA observed in the Haloarcula marismortui 50S ribosomal subunit [17].
  • Aldolase and glyceraldehyde-3-phosphate dehydrogenase from the extremely halophilic archaebacterium Haloarcula vallismortis are stable only in high concentrations of KCl present within the physiological environment [18].

Analytical, diagnostic and therapeutic context of Haloarcula


  1. Sequence and structural conservation in RNA ribose zippers. Tamura, M., Holbrook, S.R. J. Mol. Biol. (2002) [Pubmed]
  2. The structures of four macrolide antibiotics bound to the large ribosomal subunit. Hansen, J.L., Ippolito, J.A., Ban, N., Nissen, P., Moore, P.B., Steitz, T.A. Mol. Cell (2002) [Pubmed]
  3. Fast dynamics of halophilic malate dehydrogenase and BSA measured by neutron scattering under various solvent conditions influencing protein stability. Tehei, M., Madern, D., Pfister, C., Zaccai, G. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  4. Crystal structure of a dodecameric tetrahedral-shaped aminopeptidase. Russo, S., Baumann, U. J. Biol. Chem. (2004) [Pubmed]
  5. Characterization of a novel complex from halophilic archaebacteria, which displays chaperone-like activities in vitro. Franzetti, B., Schoehn, G., Ebel, C., Gagnon, J., Ruigrok, R.W., Zaccai, G. J. Biol. Chem. (2001) [Pubmed]
  6. The archaeon Haloarcula marismortui has few modifications in the central parts of its 23S ribosomal RNA. Kirpekar, F., Hansen, L.H., Rasmussen, A., Poehlsgaard, J., Vester, B. J. Mol. Biol. (2005) [Pubmed]
  7. A new simvastatin (mevinolin)-resistance marker from Haloarcula hispanica and a new Haloferax volcanii strain cured of plasmid pHV2. Wendoloski, D., Ferrer, C., Dyall-Smith, M.L. Microbiology (Reading, Engl.) (2001) [Pubmed]
  8. The genes for ribosomal protein L15 and the protein equivalent to secY in the archaebacterium Haloarcula (Halobacterium) marismortui. Arndt, E. Biochim. Biophys. Acta (1992) [Pubmed]
  9. Localization of proteins HL29 and HL31 from Haloarcula marismortui within the 50 S ribosomal subunit by chemical crosslinking. Bergmann, U., Wittmann-Liebold, B. J. Mol. Biol. (1993) [Pubmed]
  10. Stability against denaturation mechanisms in halophilic malate dehydrogenase "adapt" to solvent conditions. Bonneté, F., Madern, D., Zaccaï, G. J. Mol. Biol. (1994) [Pubmed]
  11. The structure of helix III in Xenopus oocyte 5 S rRNA: an RNA stem containing a two-nucleotide bulge. Huber, P.W., Rife, J.P., Moore, P.B. J. Mol. Biol. (2001) [Pubmed]
  12. Structures of five antibiotics bound at the peptidyl transferase center of the large ribosomal subunit. Hansen, J.L., Moore, P.B., Steitz, T.A. J. Mol. Biol. (2003) [Pubmed]
  13. Purification, characterization, and genetic analysis of Cu-containing dissimilatory nitrite reductase from a denitrifying halophilic archaeon, Haloarcula marismortui. Ichiki, H., Tanaka, Y., Mochizuki, K., Yoshimatsu, K., Sakurai, T., Fujiwara, T. J. Bacteriol. (2001) [Pubmed]
  14. Role of the 37 kDa laminin receptor precursor in the life cycle of prions. Rieger, R., Lasmézas, C.I., Weiss, S. Transfusion clinique et biologique : journal de la Société française de transfusion sanguine. (1999) [Pubmed]
  15. The Oligomeric states of Haloarcula marismortui malate dehydrogenase are modulated by solvent components as shown by crystallographic and biochemical studies. Irimia, A., Ebel, C., Madern, D., Richard, S.B., Cosenza, L.W., Zaccaï, G., Vellieux, F.M. J. Mol. Biol. (2003) [Pubmed]
  16. Solution structure and function of a conserved protein SP14.3 encoded by an essential Streptococcus pneumoniae gene. Yu, L., Gunasekera, A.H., Mack, J., Olejniczak, E.T., Chovan, L.E., Ruan, X., Towne, D.L., Lerner, C.G., Fesik, S.W. J. Mol. Biol. (2001) [Pubmed]
  17. Detailed analysis of RNA-protein interactions within the bacterial ribosomal protein L5/5S rRNA complex. Perederina, A., Nevskaya, N., Nikonov, O., Nikulin, A., Dumas, P., Yao, M., Tanaka, I., Garber, M., Gongadze, G., Nikonov, S. RNA (2002) [Pubmed]
  18. Halophilic class I aldolase and glyceraldehyde-3-phosphate dehydrogenase: some salt-dependent structural features. Krishnan, G., Altekar, W. Biochemistry (1993) [Pubmed]
  19. Cartography of ribosomal proteins of the 30S subunit from the halophilic Haloarcula marismortui and complete sequence analysis of protein HS26. Engemann, S., Noelle, R., Herfurth, E., Briesemeister, U., Grelle, G., Wittmann-Liebold, B. Eur. J. Biochem. (1995) [Pubmed]
  20. Molecular cloning of the gene encoding a 2Fe-2S ferredoxin from extremely halophilic archaeon Haloarcula japonica strain TR-1. Ikeda, A., Ichimata, T., Sugimori, D., Nakamura, S. Nucleic Acids Symp. Ser. (1997) [Pubmed]
WikiGenes - Universities