The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Deinococcus

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Deinococcus

  • The RecA proteins of Deinococcus radiodurans and Escherichia coli promote DNA strand exchange via inverse pathways [1].
  • Consistent with a role in the recognition or repair of intracellular damage, an orthologue of Ro in the radiation-resistant eubacterium Deinococcus radiodurans contributes to survival of this bacterium after UV irradiation [2].
  • We describe the combined use of 15N-metabolic labeling and a cysteine-reactive biotin affinity tag to isolate and quantitate cysteine-containing polypeptides (Cys-polypeptides) from Deinococcus radiodurans as well as from mouse B16 melanoma cells [3].
  • It is strongly suggested that a common ancestor of Deinococcus and Thermus possessed the genes for lysine biosynthesis through the aminoadipate pathway [4].
  • Here we present crystal structures of WrbA from Deinococcus radiodurans and Pseudomonas aeruginosa and their complexes with flavin mononucleotide [5].
 

High impact information on Deinococcus

 

Chemical compound and disease context of Deinococcus

 

Biological context of Deinococcus

  • The crystal structure of mismatch-specific uracil-DNA glycosylase (MUG) from Deinococcus radiodurans reveals a novel catalytic residue and broad substrate specificity [15].
  • An exonuclease I-sensitive DNA repair pathway in Deinococcus radiodurans: a major determinant of radiation resistance [16].
  • The genome of a radiation-resistant bacterium, Deinococcus radiodurans, contains one uvsE gene and two uvrA genes, uvrA1 and uvrA2 [17].
  • P21 exhibited 27% identity and 42% similarity to the Deinococcus radiodurans thiosulfate-sulfur transferase (rhodanese; EC 2.8.1.1) and similar values in relation to other rhodaneses, conserving structural domains and an active site with a cysteine, both characteristic of this family of proteins [18].
  • Statistical models were used to predict the effects of tryptone, glucose, yeast extract (TGY) and Mn on biomass formation of the highly radioresistant bacterium Deinococcus radiodurans [19].
 

Anatomical context of Deinococcus

  • The superpositions of the mutant and the wild-type L22 structures within the 50S subunits from Haloarcula marismortui and Deinococcus radiodurans show that the mutant beta-hairpin is bent inward the ribosome tunnel modifying the shape of its narrowest part and affecting the interaction between L22 and 23S rRNA [20].
 

Gene context of Deinococcus

  • Genetic evidence that the uvsE gene product of Deinococcus radiodurans R1 is a UV damage endonuclease [21].
  • The IrrE protein of Deinococcus radiodurans R1 is a novel regulator of recA expression [22].
  • The mutY homolog gene (mutY(Dr)) from Deinococcus radiodurans encodes a 39.4-kDa protein consisting of 363 amino acids that displays 35% identity to the Escherichia coli MutY (MutY(Ec)) protein [23].
  • Structural analysis of the deduced amino acid sequence of hUNC93B1 points to possible existence of multiple membrane-spanning domains. hUNC93B1 protein also displays some similarities to the bacterial ABC-2 type transporter signature and to ion transporters of Deinococcus radiodurans and Helicobacter pylori [24].
  • The glutaminyl-tRNA synthetase (GlnRS) from the radiation-resistant bacterium Deinococcus radiodurans differs from known GlnRSs and other tRNA synthetases by the presence of an additional C-terminal domain resembling the C-terminal region of the GatB subunit of tRNA-dependent amidotransferase (AdT) [25].
 

Analytical, diagnostic and therapeutic context of Deinococcus

References

  1. The RecA proteins of Deinococcus radiodurans and Escherichia coli promote DNA strand exchange via inverse pathways. Kim, J.I., Cox, M.M. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  2. A lupus-like syndrome develops in mice lacking the Ro 60-kDa protein, a major lupus autoantigen. Xue, D., Shi, H., Smith, J.D., Chen, X., Noe, D.A., Cedervall, T., Yang, D.D., Eynon, E., Brash, D.E., Kashgarian, M., Flavell, R.A., Wolin, S.L. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  3. Quantitative analysis of bacterial and mammalian proteomes using a combination of cysteine affinity tags and 15N-metabolic labeling. Conrads, T.P., Alving, K., Veenstra, T.D., Belov, M.E., Anderson, G.A., Anderson, D.J., Lipton, M.S., Pasa-Tolić, L., Udseth, H.R., Chrisler, W.B., Thrall, B.D., Smith, R.D. Anal. Chem. (2001) [Pubmed]
  4. Distribution of genes for lysine biosynthesis through the aminoadipate pathway among prokaryotic genomes. Nishida, H. Bioinformatics (2001) [Pubmed]
  5. Crystal structures of the tryptophan repressor binding protein WrbA and complexes with flavin mononucleotide. Gorman, J., Shapiro, L. Protein Sci. (2005) [Pubmed]
  6. An unusual tryptophanyl tRNA synthetase interacts with nitric oxide synthase in Deinococcus radiodurans. Buddha, M.R., Keery, K.M., Crane, B.R. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  7. Structural insight into the role of the ribosomal tunnel in cellular regulation. Berisio, R., Schluenzen, F., Harms, J., Bashan, A., Auerbach, T., Baram, D., Yonath, A. Nat. Struct. Biol. (2003) [Pubmed]
  8. Transfer RNA-dependent amino acid biosynthesis: an essential route to asparagine formation. Min, B., Pelaschier, J.T., Graham, D.E., Tumbula-Hansen, D., Söll, D. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  9. How radiation kills cells: survival of Deinococcus radiodurans and Shewanella oneidensis under oxidative stress. Ghosal, D., Omelchenko, M.V., Gaidamakova, E.K., Matrosova, V.Y., Vasilenko, A., Venkateswaran, A., Zhai, M., Kostandarithes, H.M., Brim, H., Makarova, K.S., Wackett, L.P., Fredrickson, J.K., Daly, M.J. FEMS Microbiol. Rev. (2005) [Pubmed]
  10. HucR, a novel uric acid-responsive member of the MarR family of transcriptional regulators from Deinococcus radiodurans. Wilkinson, S.P., Grove, A. J. Biol. Chem. (2004) [Pubmed]
  11. Structures of tryptophanyl-tRNA synthetase II from Deinococcus radiodurans bound to ATP and tryptophan. Insight into subunit cooperativity and domain motions linked to catalysis. Buddha, M.R., Crane, B.R. J. Biol. Chem. (2005) [Pubmed]
  12. Structure of a novel glucosamine-containing phosphoglycolipid from Deinococcus radiodurans. Huang, Y., Anderson, R. J. Biol. Chem. (1989) [Pubmed]
  13. Aspartyl-tRNA synthetase requires a conserved proline in the anticodon-binding loop for tRNA(Asn) recognition in vivo. Feng, L., Yuan, J., Toogood, H., Tumbula-Hansen, D., Söll, D. J. Biol. Chem. (2005) [Pubmed]
  14. Structural basis of 5-nitroimidazole antibiotic resistance: the crystal structure of NimA from Deinococcus radiodurans. Leiros, H.K., Kozielski-Stuhrmann, S., Kapp, U., Terradot, L., Leonard, G.A., McSweeney, S.M. J. Biol. Chem. (2004) [Pubmed]
  15. The crystal structure of mismatch-specific uracil-DNA glycosylase (MUG) from Deinococcus radiodurans reveals a novel catalytic residue and broad substrate specificity. Moe, E., Leiros, I., Smalås, A.O., McSweeney, S. J. Biol. Chem. (2006) [Pubmed]
  16. An exonuclease I-sensitive DNA repair pathway in Deinococcus radiodurans: a major determinant of radiation resistance. Misra, H.S., Khairnar, N.P., Kota, S., Shrivastava, S., Joshi, V.P., Apte, S.K. Mol. Microbiol. (2006) [Pubmed]
  17. Characterization of pathways dependent on the uvsE, uvrA1, or uvrA2 gene product for UV resistance in Deinococcus radiodurans. Tanaka, M., Narumi, I., Funayama, T., Kikuchi, M., Watanabe, H., Matsunaga, T., Nikaido, O., Yamamoto, K. J. Bacteriol. (2005) [Pubmed]
  18. An exported rhodanese-like protein is induced during growth of Acidithiobacillus ferrooxidans in metal sulfides and different sulfur compounds. Ramírez, P., Toledo, H., Guiliani, N., Jerez, C.A. Appl. Environ. Microbiol. (2002) [Pubmed]
  19. Induction of a futile Embden-Meyerhof-Parnas pathway in Deinococcus radiodurans by Mn: possible role of the pentose phosphate pathway in cell survival. Zhang, Y.M., Wong, T.Y., Chen, L.Y., Lin, C.S., Liu, J.K. Appl. Environ. Microbiol. (2000) [Pubmed]
  20. L22 ribosomal protein and effect of its mutation on ribosome resistance to erythromycin. Davydova, N., Streltsov, V., Wilce, M., Liljas, A., Garber, M. J. Mol. Biol. (2002) [Pubmed]
  21. Genetic evidence that the uvsE gene product of Deinococcus radiodurans R1 is a UV damage endonuclease. Earl, A.M., Rankin, S.K., Kim, K.P., Lamendola, O.N., Battista, J.R. J. Bacteriol. (2002) [Pubmed]
  22. The IrrE protein of Deinococcus radiodurans R1 is a novel regulator of recA expression. Earl, A.M., Mohundro, M.M., Mian, I.S., Battista, J.R. J. Bacteriol. (2002) [Pubmed]
  23. Molecular cloning and functional analysis of the MutY homolog of Deinococcus radiodurans. Li, X., Lu, A.L. J. Bacteriol. (2001) [Pubmed]
  24. hUNC93B1: a novel human gene representing a new gene family and encoding an unc-93-like protein. Kashuba, V.I., Protopopov, A.I., Kvasha, S.M., Gizatullin, R.Z., Wahlestedt, C., Kisselev, L.L., Klein, G., Zabarovsky, E.R. Gene (2002) [Pubmed]
  25. Crystallization and preliminary X-ray characterization of the atypical glutaminyl-tRNA synthetase from Deinococcus radiodurans. Deniziak, M.A., Sauter, C., Becker, H.D., Giegé, R., Kern, D. Acta Crystallogr. D Biol. Crystallogr. (2004) [Pubmed]
  26. Identification and characterization of a novel bacterial sulfite oxidase with no heme binding domain from Deinococcus radiodurans. D'Errico, G., Di Salle, A., La Cara, F., Rossi, M., Cannio, R. J. Bacteriol. (2006) [Pubmed]
  27. Purification and some properties of superoxide dismutase from Deinococcus radiophilus, the UV-resistant bacterium. Yun, Y.S., Lee, Y.N. Extremophiles (2004) [Pubmed]
  28. Pharmacologic application of FTIR spectroscopy: effect of ascorbic acid-induced free radicals on Deinococcus radiodurans. Melin, A.M., Perromat, A., Déléris, G. Biospectroscopy. (1999) [Pubmed]
 
WikiGenes - Universities