The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Porphyridium

  • The beta subunits of the allophycocyanins from the cyanobacterium Synechococcus PCC 6301 and the red alga Porphyridium cruentum each released 1 eq of methylamine upon acid hydrolysis [1].
  • When tested in vivo, Porphyridium sp. polysaccharide conferred significant and efficient protection against HSV-1 infection: at a concentration as low as 100 microg/ml, it prevented the appearance and development of symptoms of HSV-1 infection in rats and rabbits [2].

High impact information on Porphyridium

  • The specificity of pigment binding was examined by in vitro reconstitution of various pigments with a simple light-harvesting protein (LHCaR1), from a red alga (Porphyridium cruentum), that normally has eight Chl a and four zeaxanthin molecules [3].
  • Amino acid sequence homology between N- and C-terminal halves of a carbonic anhydrase in Porphyridium purpureum, as deduced from the cloned cDNA [4].
  • The unicellular rhodophyte, Porphyridium cruentum, and the filamentous cyanobacterium, Calothrix sp. PCC 7601, contain phycobiliproteins that have covalently bound phycobilin chromophores [5].
  • Appropriate small peptides were obtained by exhaustive enzymatic digestion of Porphyridium cruentum R-phycocyanin (peptide R-PC beta-2TP PEB) and B-phycoerythrin (peptide B-PE beta-2TP PEB) [6].
  • Five unique phycoerythrobilin (PEB) peptides were prepared from Porphyridium cruentum B-phycoerythrin by a combination of tryptic and thermolytic digestion without alteration in the spectroscopic properties of the bilin (Lundell, D.J., Glazer, A.N., DeLange, R.J., and Brown, D.M. (1984) J [7].

Chemical compound and disease context of Porphyridium

  • The occurrence of post-translationally methylated asparagine residues in beta AP from Anabaena variabilis, Synechococcus PCC 6301 and Porphyridium cruentum has recently been reported (Klotz, A.V., Leary, J.A. & Glazer, A.N. (1986) J. Biol. Chem. 261, 15891-15894) [8].

Biological context of Porphyridium


Associations of Porphyridium with chemical compounds

  • Polyacrylamide/sodium dodecyl sulphate gel electrophoresis of basic proteins purified from Porphyridium nuclear preparations gives a pattern characteristic of core histones [11].
  • Biolistic transformation of synchronized Porphyridium sp. cells with the mutant AHAS(W492S) gene that confers herbicide resistance gave a high frequency of sulfomethuron methyl-resistant colonies [12].
  • The rate of oxidation of the fluorescent protein porphyridium cruentum beta-phycoerythrin (beta-PE) caused by the oxidizing agent CuSO4 was shown to be accelerated by addition of the catecholamines dopamine and L-dopa [13].
  • The extracellular anionic polysaccharide isolated from cultures of a unicellular red alga, Porphyridium cruentum, contains a small amount of protein after extensive purification [14].
  • Biosynthesis of eicosapentaenoic acid in the microalga Porphyridium cruentum. I: The use of externally supplied fatty acids [15].

Gene context of Porphyridium


  1. Post-translational methylation of asparaginyl residues. Identification of beta-71 gamma-N-methylasparagine in allophycocyanin. Klotz, A.V., Leary, J.A., Glazer, A.N. J. Biol. Chem. (1986) [Pubmed]
  2. Activity of Porphyridium sp. polysaccharide against herpes simplex viruses in vitro and in vivo. Huheihel, M., Ishanu, V., Tal, J., Arad, S.M. J. Biochem. Biophys. Methods (2002) [Pubmed]
  3. Chlorophyll and carotenoid binding in a simple red algal light-harvesting complex crosses phylogenetic lines. Grabowski, B., Cunningham, F.X., Gantt, E. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  4. Amino acid sequence homology between N- and C-terminal halves of a carbonic anhydrase in Porphyridium purpureum, as deduced from the cloned cDNA. Mitsuhashi, S., Miyachi, S. J. Biol. Chem. (1996) [Pubmed]
  5. Phytochrome assembly. The structure and biological activity of 2(R),3(E)-phytochromobilin derived from phycobiliproteins. Cornejo, J., Beale, S.I., Terry, M.J., Lagarias, J.C. J. Biol. Chem. (1992) [Pubmed]
  6. Phycobiliprotein-bilin linkage diversity. II. Structural studies on A- and D-ring-linked phycoerythrobilins. Klotz, A.V., Glazer, A.N., Bishop, J.E., Nagy, J.O., Rapoport, H. J. Biol. Chem. (1986) [Pubmed]
  7. Bilin attachment sites in the alpha and beta subunits of B-phycoerythrin. Structural studies on the singly linked phycoerythrobilins. Schoenleber, R.W., Lundell, D.J., Glazer, A.N., Rapoport, H. J. Biol. Chem. (1984) [Pubmed]
  8. Isolation and localization of N4-methylasparagine in phycobiliproteins from the cyanobacterium Mastigocladus laminosus. Rümbeli, R., Suter, F., Wirth, M., Sidler, W., Zuber, H. Biol. Chem. Hoppe-Seyler (1987) [Pubmed]
  9. Soluble polysaccharide and biomass of red microalga Porphyridium sp. alter intestinal morphology and reduce serum cholesterol in rats. Dvir, I., Chayoth, R., Sod-Moriah, U., Shany, S., Nyska, A., Stark, A.H., Madar, Z., Arad, S.M. Br. J. Nutr. (2000) [Pubmed]
  10. Characterization of the Porphyridium cruentum Chl a-binding LHC by in vitro reconstitution: LHCaR1 binds 8 Chl a molecules and proportionately more carotenoids than CAB proteins. Grabowski, B., Tan, S., Cunningham, F.X., Gantt, E. Photosyn. Res. (2000) [Pubmed]
  11. Chromatin from the unicellular red alga Porphyridium has a nucleosome structure. Barnes, K.L., Craigie, R.A., Cattini, P.A., Cavalier-Smith, T. J. Cell. Sci. (1982) [Pubmed]
  12. Stable chloroplast transformation of the unicellular red alga Porphyridium species. Lapidot, M., Raveh, D., Sivan, A., Arad, S.M., Shapira, M. Plant Physiol. (2002) [Pubmed]
  13. Oxidative damage caused by free radicals produced during catecholamine autoxidation: protective effects of O-methylation and melatonin. Miller, J.W., Selhub, J., Joseph, J.A. Free Radic. Biol. Med. (1996) [Pubmed]
  14. The covalent linkage of protein to carbohydrate in the extracellular protein-polysaccharide from the red alga Porphyridium cruentum. Heaney-Kieras, J., Rodén, L., Chapman, D.J. Biochem. J. (1977) [Pubmed]
  15. Biosynthesis of eicosapentaenoic acid in the microalga Porphyridium cruentum. I: The use of externally supplied fatty acids. Shiran, D., Khozin, I., Heimer, Y.M., Cohen, Z. Lipids (1996) [Pubmed]
  16. Purification and properties of superoxide dismutase from a red alga, Porphyridium cruentum. Misra, H.P., Fridovich, I. J. Biol. Chem. (1977) [Pubmed]
  17. psbD sequences of Bumilleriopsis filiformis (Heterokontophyta, Xanthophyceae) and Porphyridium purpureum (Rhodophyta, Bangiophycidae): evidence for polyphyletic origins of plastids. Scherer, S., Lechner, S., Böger, P. Curr. Genet. (1993) [Pubmed]
  18. Distribution of thioredoxins in Cyanobacteria. Schmidt, A., Christen, U. Z. Naturforsch., C, Biosci. (1979) [Pubmed]
WikiGenes - Universities