The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Anabaena

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Anabaena

 

High impact information on Anabaena

 

Chemical compound and disease context of Anabaena

  • In RNA isolated from the endosymbiont there is a 10-fold reduction of GS transcript levels, a greater than 5-fold increase in 32-kd transcript levels and a greater than 5-fold decrease in RuBP carboxylase transcript levels, compared with levels in the free-living Anabaena azollae [11].
  • Cocrystal structures of Anabaena HU bound to DNA (1P71, 1P78, 1P51) reveal that while underlying proline intercalation and asymmetric charge neutralization mechanisms of DNA bending are similar for IHF and HU, HU stabilizes different DNA bend angles ( approximately 105-140 degrees ) [12].
  • The coding sequence for Anabaena 7120 glutamine synthetase [L-glutamate:ammonia ligase (ADP-forming), EC 6.3.1.1] are shown to be contained within a 7.5-kilobase-pair (kbp) HindIII fragment that has been cloned by plaque hybridization [13].
  • The rbcL-rbcS transcript is equally abundant in Anabaena azollae grown in the light or on fructose in the dark [14].
  • Sucrose biosynthesis in a prokaryotic organism: Presence of two sucrose-phosphate synthases in Anabaena with remarkable differences compared with the plant enzymes [15].
 

Biological context of Anabaena

  • The symbiont rbcL gene shared the highest degree of nucleotide sequence identity with the cyanobacterium Anabaena (69%) while the rbcS nucleotide sequence shared 61% identity with that of the green alga Chlamydomonas reinhardtii [16].
  • To explore the role of individual residues in the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39), small subunits with single amino acid substitutions in three regions of relative sequence conservation were produced by directed mutagenesis of the rbcS gene from Anabaena 7120 [2].
  • The patA mutation suppresses the multiheterocyst phenotype produced by extra copies of the wild-type hetR gene described previously, suggesting that PatA and HetR are components of the same environment-sensing regulatory circuit in Anabaena [17].
  • The tandem GAF domains from the cyanobacterium Anabaena PCC7120 cyaB2 adenylyl cyclase form an antiparallel dimer with cAMP bound to all four binding sites. cAMP binding causes highly cooperative allosteric enzyme activation (>500-fold; EC(50) = 1 microM; Hill coefficient >2.0) [18].
  • Nitrogen-regulated genes for the metabolism of cyanophycin, a bacterial nitrogen reserve polymer: expression and mutational analysis of two cyanophycin synthetase and cyanophycinase gene clusters in heterocyst-forming cyanobacterium Anabaena sp. PCC 7120 [19].
 

Anatomical context of Anabaena

 

Gene context of Anabaena

  • In the filamentous cyanobacterium Anabaena, the gene for the small subunit (rbcS) of ribulose-1,5-bisphosphate carboxylase is linked to and transcribed together with the gene encoding the large subunit (rbcL) of the same enzyme [14].
  • Comparison of the nifB 5'-flanking sequence with the nifH 5'-flanking sequence did not reveal any consensus base pairs that would define a nif promoter for Anabaena [24].
  • An Anabaena nucA insertional mutant was generated which failed to produce the 29 kDa nuclease [25].
  • Summary In the filamentous cyanobacterium Anabaena sp. PCC 7120 patS and hetN suppress the differentiation of vegetative cells into nitrogen-fixing heterocysts to establish and maintain a pattern of single heterocysts separated by approximately 10 undifferentiated vegetative cells [26].
  • An Anabaena ntcB mutant was able to use ammonium and dinitrogen as sources of nitrogen for growth but was unable to assimilate nitrate [27].
 

Analytical, diagnostic and therapeutic context of Anabaena

References

  1. Cyanobacterial DNA-binding protein related to Escherichia coli HU. Haselkorn, R., Rouvière-Yaniv, J. Proc. Natl. Acad. Sci. U.S.A. (1976) [Pubmed]
  2. Residues in three conserved regions of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase are required for quaternary structure. Fitchen, J.H., Knight, S., Andersson, I., Branden, C.I., McIntosh, L. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  3. The interactions of cyanobacterial cytochrome c6 and cytochrome f, characterized by NMR. Crowley, P.B., Díaz-Quintana, A., Molina-Heredia, F.P., Nieto, P., Sutter, M., Haehnel, W., De La Rosa, M.A., Ubbink, M. J. Biol. Chem. (2002) [Pubmed]
  4. On the advantage of being a dimer, a case study using the dimeric Serratia nuclease and the monomeric nuclease from Anabaena sp. strain PCC 7120. Franke, I., Meiss, G., Pingoud, A. J. Biol. Chem. (1999) [Pubmed]
  5. Ubiquitin in the prokaryote Anabaena variabilis. Durner, J., Böger, P. J. Biol. Chem. (1995) [Pubmed]
  6. Rearrangement of nitrogen fixation genes during heterocyst differentiation in the cyanobacterium Anabaena. Golden, J.W., Robinson, S.J., Haselkorn, R. Nature (1985) [Pubmed]
  7. Heterocyst pattern formation controlled by a diffusible peptide. Yoon, H.S., Golden, J.W. Science (1998) [Pubmed]
  8. Bacterial origin of a chloroplast intron: conserved self-splicing group I introns in cyanobacteria. Xu, M.Q., Kathe, S.D., Goodrich-Blair, H., Nierzwicki-Bauer, S.A., Shub, D.A. Science (1990) [Pubmed]
  9. Genome rearrangement and nitrogen fixation in Anabaena blocked by inactivation of xisA gene. Golden, J.W., Wiest, D.R. Science (1988) [Pubmed]
  10. Anabaena xisF gene encodes a developmentally regulated site-specific recombinase. Carrasco, C.D., Ramaswamy, K.S., Ramasubramanian, T.S., Golden, J.W. Genes Dev. (1994) [Pubmed]
  11. Differences in mRNA levels in Anabaena living freely or in symbiotic association with Azolla. Nierzwicki-Bauer, S.A., Haselkorn, R. EMBO J. (1986) [Pubmed]
  12. Flexible DNA bending in HU-DNA cocrystal structures. Swinger, K.K., Lemberg, K.M., Zhang, Y., Rice, P.A. EMBO J. (2003) [Pubmed]
  13. A cloned cyanobacterial gene for glutamine synthetase functions in Escherichia coli, but the enzyme is not adenylylated. Fisher, R., Tuli, R., Haselkorn, R. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  14. Cotranscription of genes encoding the small and large subunits of ribulose-1,5-bisphosphate carboxylase in the cyanobacterium Anabaena 7120. Nierzwicki-Bauer, S.A., Curtis, S.E., Haselkorn, R. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  15. Sucrose biosynthesis in a prokaryotic organism: Presence of two sucrose-phosphate synthases in Anabaena with remarkable differences compared with the plant enzymes. Porchia, A.C., Salerno, G.L. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  16. Nucleotide sequence and expression of a deep-sea ribulose-1,5-bisphosphate carboxylase gene cloned from a chemoautotrophic bacterial endosymbiont. Stein, J.L., Haygood, M., Felbeck, H. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  17. The patA gene product, which contains a region similar to CheY of Escherichia coli, controls heterocyst pattern formation in the cyanobacterium Anabaena 7120. Liang, J., Scappino, L., Haselkorn, R. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  18. The cyanobacterial tandem GAF domains from the cyaB2 adenylyl cyclase signal via both cAMP-binding sites. Bruder, S., Linder, J.U., Martinez, S.E., Zheng, N., Beavo, J.A., Schultz, J.E. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  19. Nitrogen-regulated genes for the metabolism of cyanophycin, a bacterial nitrogen reserve polymer: expression and mutational analysis of two cyanophycin synthetase and cyanophycinase gene clusters in heterocyst-forming cyanobacterium Anabaena sp. PCC 7120. Picossi, S., Valladares, A., Flores, E., Herrero, A. J. Biol. Chem. (2004) [Pubmed]
  20. Isolation and characterization of thioredoxin from the cyanobacterium, Anabaena sp. Gleason, F.K., Holmgren, A. J. Biol. Chem. (1981) [Pubmed]
  21. Effects of sodium azide on phototaxis of the blue-green alga Anabaena variabilis and consequences to the two-photoreceptor systems-hypothesis. Nultsch, W., Schuchart, H., Koenig, F. Arch. Microbiol. (1983) [Pubmed]
  22. Two methyl ester derivatives of microcystins, cyclic heptapeptide hepatotoxins, isolated from Anabaena flos-aquae strain CYA 83/1. Sivonen, K., Skulberg, O.M., Namikoshi, M., Evans, W.R., Carmichael, W.W., Rinehart, K.L. Toxicon (1992) [Pubmed]
  23. Cytochrome b/c complexes with polyprenyl quinol:cytochrome c oxidoreductase activity from Anabaena variabilis and Rhodopseudomonas sphaeroides GA: comparison of preparations from chloroplasts and mitochondria. Hauska, G., Gabellini, N., Hurt, E., Krinner, M., Lockau, W. Biochem. Soc. Trans. (1982) [Pubmed]
  24. Nitrogen fixation (nif) genes of the cyanobacterium Anabaena species strain PCC 7120. The nifB-fdxN-nifS-nifU operon. Mulligan, M.E., Haselkorn, R. J. Biol. Chem. (1989) [Pubmed]
  25. Identification, genetic analysis and characterization of a sugar-non-specific nuclease from the cyanobacterium Anabaena sp. PCC 7120. Muro-Pastor, A.M., Flores, E., Herrero, A., Wolk, C.P. Mol. Microbiol. (1992) [Pubmed]
  26. Inactivation of patS and hetN causes lethal levels of heterocyst differentiation in the filamentous cyanobacterium Anabaena sp. PCC 7120. Borthakur, P.B., Orozco, C.C., Young-Robbins, S.S., Haselkorn, R., Callahan, S.M. Mol. Microbiol. (2005) [Pubmed]
  27. Activation of the Anabaena nir operon promoter requires both NtcA (CAP family) and NtcB (LysR family) transcription factors. Frías, J.E., Flores, E., Herrero, A. Mol. Microbiol. (2000) [Pubmed]
  28. Site-directed mutagenesis of cytochrome c(6) from Anabaena species PCC 7119. Identification of surface residues of the hemeprotein involved in photosystem I reduction. Molina-Heredia, F.P., Díaz-Quintana, A., Hervás, M., Navarro, J.A., De La Rosa, M.A. J. Biol. Chem. (1999) [Pubmed]
  29. Activity and thermostability of the small self-splicing group I intron in the pre-tRNA(lle) of the purple bacterium Azoarcus. Tanner, M., Cech, T. RNA (1996) [Pubmed]
  30. Crystallization and structure determination to 2.5-A resolution of the oxidized [2Fe-2S] ferredoxin isolated from Anabaena 7120. Rypniewski, W.R., Breiter, D.R., Benning, M.M., Wesenberg, G., Oh, B.H., Markley, J.L., Rayment, I., Holden, H.M. Biochemistry (1991) [Pubmed]
  31. FTIR spectroscopy of the all-trans form of Anabaena sensory rhodopsin at 77 K: hydrogen bond of a water between the Schiff base and Asp75. Furutani, Y., Kawanabe, A., Jung, K.H., Kandori, H. Biochemistry (2005) [Pubmed]
  32. Role of Arg100 and Arg264 from Anabaena PCC 7119 ferredoxin-NADP+ reductase for optimal NADP+ binding and electron transfer. Martínez-Júlvez, M., Hermoso, J., Hurley, J.K., Mayoral, T., Sanz-Aparicio, J., Tollin, G., Gómez-Moreno, C., Medina, M. Biochemistry (1998) [Pubmed]
 
WikiGenes - Universities