The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

ECs2365  -  superoxide dismutase

Escherichia coli O157:H7 str. Sakai

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of ECs2365


Psychiatry related information on ECs2365


High impact information on ECs2365

  • No ALS-like phenotype is observed in mice overexpressing wild-type SOD1 or mice without any SOD1 activity [2].
  • These dominant mutations, which do not necessarily decrease SOD1 activity, may confer a gain of function that is selectively lethal to motor neurons [2].
  • Two mutations which have been successfully used to generate transgenic mice that develop an ALS-like syndrome are glycine 85 to arginine (G85R) and glycine 93 to alanine (G93A) with the mutant SOD1 allele overexpressed in a normal mouse genetic background [2].
  • Both the iodinating and bactericidal activities were inhibited by catalase and the hydroxyl radical (OH.) scavenger mannitol, whereas superoxide dismutase was ineffective [7].
  • Superoxide dismutase, which removes O2-, consistently inhibited phagocytosis-associated nitroblue tetrazolium (NBT) reduction indicating the involvement of O2- in this process [4].

Chemical compound and disease context of ECs2365


Biological context of ECs2365


Anatomical context of ECs2365

  • Polyacrylamide electrophoresis separated this activity into a minor band that appeared to be the manganese-containing superoxide dismutase associated with mitochondria and a more concentrated, cyanide-sensitive, cytosol form of the enzyme with electrophoretic mobility that corresponded to that of erythrocyte cuprozinc superoxide dismutase [4].
  • Activity of superoxide dismutase, the enzyme responsible for protecting the cell from the damaging effects of O2-, was approximately equal in homogenates of normal and CGD granulocytes [4].
  • Cu,Zn superoxide dismutase is a peroxisomal enzyme in human fibroblasts and hepatoma cells [16].
  • These defenses include antioxidant enzymes such as superoxide dismutase and catalase, DNA repair systems, scavenging substrates, and competition with phagocytes for molecular oxygen [17].
  • The failure of intrabacterial catalase or superoxide dismutase to protect bacteria from killing by neutrophils might indicate either that the flux of O-2 and H2O2 in the phagosome is too great for the intrabacterial enzymes to alter or that the site of injury is at the bacterial surface [18].

Associations of ECs2365 with chemical compounds


Regulatory relationships of ECs2365


Other interactions of ECs2365


Analytical, diagnostic and therapeutic context of ECs2365


  1. Superoxide radical and superoxide dismutases. Fridovich, I. Annu. Rev. Biochem. (1995) [Pubmed]
  2. Mutations in SOD1 associated with amyotrophic lateral sclerosis cause novel protein interactions. Kunst, C.B., Mezey, E., Brownstein, M.J., Patterson, D. Nat. Genet. (1997) [Pubmed]
  3. DNA damage and oxygen radical toxicity. Imlay, J.A., Linn, S. Science (1988) [Pubmed]
  4. The role of superoxide anion generation in phagocytic bactericidal activity. Studies with normal and chronic granulomatous disease leukocytes. Johnston, R.B., Keele, B.B., Misra, H.P., Lehmeyer, J.E., Webb, L.S., Baehner, R.L., RaJagopalan, K.V. J. Clin. Invest. (1975) [Pubmed]
  5. Superoxide radicals in feline intestinal ischemia. Granger, D.N., Rutili, G., McCord, J.M. Gastroenterology (1981) [Pubmed]
  6. Genetic, enzymatic, and pathogenic studies of the iron superoxide dismutase of Campylobacter jejuni. Pesci, E.C., Cottle, D.L., Pickett, C.L. Infect. Immun. (1994) [Pubmed]
  7. Prooxidant activity of transferrin and lactoferrin. Klebanoff, S.J., Waltersdorph, A.M. J. Exp. Med. (1990) [Pubmed]
  8. Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life? Carlioz, A., Touati, D. EMBO J. (1986) [Pubmed]
  9. Induction of manganese-containing superoxide dismutase in anaerobic Escherichia coli by diamide and 1,10-phenanthroline: sites of transcriptional regulation. Privalle, C.T., Kong, S.E., Fridovich, I. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  10. Isolation of the Escherichia coli iron superoxide dismutase gene: evidence that intracellular superoxide concentration does not regulate oxygen-dependent synthesis of the manganese superoxide dismutase. Nettleton, C.J., Bull, C., Baldwin, T.O., Fee, J.A. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  11. Superoxide dismutase participates in the enzymatic formation of the tyrosine radical of ribonucleotide reductase from Escherichia coli. Eliasson, R., Jörnvall, H., Reichard, P. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  12. Superoxide dismutase-rich bacteria. Paradoxical increase in oxidant toxicity. Scott, M.D., Meshnick, S.R., Eaton, J.W. J. Biol. Chem. (1987) [Pubmed]
  13. Role of free radicals and platelet-activating factor in the genesis of intestinal motor disturbances induced by Escherichia coli endotoxins in rats. Pons, L., Droy-Lefaix, M.T., Braquet, P., Bueno, L. Gastroenterology (1991) [Pubmed]
  14. Escherichia coli iron superoxide dismutase targeted to the mitochondria of yeast cells protects the cells against oxidative stress. Balzan, R., Bannister, W.H., Hunter, G.J., Bannister, J.V. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  15. Construction of a catalytically active iron superoxide dismutase by rational protein design. Pinto, A.L., Hellinga, H.W., Caradonna, J.P. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  16. Cu,Zn superoxide dismutase is a peroxisomal enzyme in human fibroblasts and hepatoma cells. Keller, G.A., Warner, T.G., Steimer, K.S., Hallewell, R.A. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  17. Bacterial adaptation to oxidative stress: implications for pathogenesis and interaction with phagocytic cells. Hassett, D.J., Cohen, M.S. FASEB J. (1989) [Pubmed]
  18. Catalase and superoxide dismutase in Escherichia coli. Schwartz, C.E., Krall, J., Norton, L., McKay, K., Kay, D., Lynch, R.E. J. Biol. Chem. (1983) [Pubmed]
  19. Glutathione-mediated destabilization in vitro of [2Fe-2S] centers in the SoxR regulatory protein. Ding, H., Demple, B. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  20. NADH oxidase activation is involved in arsenite-induced oxidative DNA damage in human vascular smooth muscle cells. Lynn, S., Gurr, J.R., Lai, H.T., Jan, K.Y. Circ. Res. (2000) [Pubmed]
  21. Nitric oxide sensitivity of the aconitases. Gardner, P.R., Costantino, G., Szabó, C., Salzman, A.L. J. Biol. Chem. (1997) [Pubmed]
  22. The function of superoxide dismutase during the enzymatic formation of the free radical of ribonucleotide reductase. Fontecave, M., Gräslund, A., Reichard, P. J. Biol. Chem. (1987) [Pubmed]
  23. Control of Escherichia coli superoxide dismutase (sodA and sodB) genes by the ferric uptake regulation (fur) locus. Niederhoffer, E.C., Naranjo, C.M., Bradley, K.L., Fee, J.A. J. Bacteriol. (1990) [Pubmed]
  24. Bacteriocuprein superoxide dismutase of Photobacterium leiognathi. Isolation and sequence of the gene and evidence for a precursor form. Steinman, H.M. J. Biol. Chem. (1987) [Pubmed]
  25. Scavengase p20: a novel family of bacterial antioxidant enzymes. Wan, X.Y., Zhou, Y., Yan, Z.Y., Wang, H.L., Hou, Y.D., Jin, D.Y. FEBS Lett. (1997) [Pubmed]
  26. Three extremely thermostable proteins from Sulfolobus and a reappraisal of the 'traffic rules'. Schäfer, T., Bönisch, H., Kardinahl, S., Schmidt, C., Schäfer, G. Biol. Chem. (1996) [Pubmed]
  27. Induction of the soxRS regulon of Escherichia coli by glycolaldehyde. Benov, L., Fridovich, I. Arch. Biochem. Biophys. (2002) [Pubmed]
  28. CuZn superoxide dismutase (SOD-1):tetanus toxin fragment C hybrid protein for targeted delivery of SOD-1 to neuronal cells. Francis, J.W., Hosler, B.A., Brown, R.H., Fishman, P.S. J. Biol. Chem. (1995) [Pubmed]
  29. Candida albicans expresses an unusual cytoplasmic manganese-containing superoxide dismutase (SOD3 gene product) upon the entry and during the stationary phase. Lamarre, C., LeMay, J.D., Deslauriers, N., Bourbonnais, Y. J. Biol. Chem. (2001) [Pubmed]
  30. Activation of the proton transfer pathway in catalysis by iron superoxide dismutase. Greenleaf, W.B., Silverman, D.N. J. Biol. Chem. (2002) [Pubmed]
  31. alpha, beta-Dihydroxyisovalerate dehydratase. A superoxide-sensitive enzyme. Kuo, C.F., Mashino, T., Fridovich, I. J. Biol. Chem. (1987) [Pubmed]
WikiGenes - Universities