The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Spectroscopy, Electron Energy-Loss

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Spectroscopy, Electron Energy-Loss

 

High impact information on Spectroscopy, Electron Energy-Loss

  • Electron energy-loss spectroscopy, which apparently can detect less than 10(-20) gram of fluorine in an area of 10 square nonometers, can thus localize fluorinated tracer molecules with biological activity [2].
  • Spatially resolved electron energy loss spectroscopy experiments have been performed in an electron microscope on several individual boron nitride (BN) single-, double-, and triple-walled nanotubes, whose diameters and number of shells have been carefully measured [3].
  • The "Dirac cone spectrum" of electrons at the chemical potential of graphite generates our collective mode, so we call this "spin-1 zero sound" of the "Dirac sea." Epithermal neutron scattering experiments and spin polarized electron energy loss spectroscopy can be used to confirm and study our collective mode [4].
  • Temperature programmed desorption, high-resolution electron energy loss spectroscopy (HREELS), and density functional theory (DFT) were used to investigate the adsorption and reaction of ethylene oxide (EO) on the Ag(111) surface [5].
  • Using electron energy loss spectroscopy imaging of calcium-binding capacity and anti-homogalacturonan (HG) antibody probes (PAM1 and JIM5) we demonstrate that maturation processes involving middle lamella HG are altered in Cnr fruit, resulting in the absence or a low level of HG-/calcium-based cell adhesion [6].
 

Biological context of Spectroscopy, Electron Energy-Loss

 

Anatomical context of Spectroscopy, Electron Energy-Loss

 

Associations of Spectroscopy, Electron Energy-Loss with chemical compounds

 

Gene context of Spectroscopy, Electron Energy-Loss

 

Analytical, diagnostic and therapeutic context of Spectroscopy, Electron Energy-Loss

References

  1. Initial studies with high resolution TEM and electron energy loss spectroscopy studies of ferritin cores extracted from brains of patients with progressive supranuclear palsy and Alzheimer disease. Quintana, C., Lancin, M., Marhic, C., Pérez, M., Martin-Benito, J., Avila, J., Carrascosa, J.L. Cell. Mol. Biol. (Noisy-le-grand) (2000) [Pubmed]
  2. Fluorinated molecule as a tracer: difluoroserotonin in human platelets mapped by electron energy-loss spectroscopy. Costa, J.L., Joy, D.C., Maher, D.M., Kirk, K.L., Hui, S.W. Science (1978) [Pubmed]
  3. Electron energy loss spectroscopy measurement of the optical gaps on individual boron nitride single-walled and multiwalled nanotubes. Arenal, R., Stéphan, O., Kociak, M., Taverna, D., Loiseau, A., Colliex, C. Phys. Rev. Lett. (2005) [Pubmed]
  4. Gapless spin-1 neutral collective mode branch for graphite. Baskaran, G., Jafari, S.A. Phys. Rev. Lett. (2002) [Pubmed]
  5. Formation of a stable surface oxametallacycle that produces ethylene oxide. Linic, S., Barteau, M.A. J. Am. Chem. Soc. (2002) [Pubmed]
  6. Altered middle lamella homogalacturonan and disrupted deposition of (1-->5)-alpha-L-arabinan in the pericarp of Cnr, a ripening mutant of tomato. Orfila, C., Seymour, G.B., Willats, W.G., Huxham, I.M., Jarvis, M.C., Dover, C.J., Thompson, A.J., Knox, J.P. Plant Physiol. (2001) [Pubmed]
  7. Subcellular localization of cadmium in the root cells of Allium cepa by electron energy loss spectroscopy and cytochemistry. Liu, D., Kottke, I. J. Biosci. (2004) [Pubmed]
  8. Adhesion-related glycocalyx study: quantitative approach with imaging-spectrum in the energy filtering transmission electron microscope (EFTEM). Soler, M., Desplat-Jego, S., Vacher, B., Ponsonnet, L., Fraterno, M., Bongrand, P., Martin, J.M., Foa, C. FEBS Lett. (1998) [Pubmed]
  9. Hereditary hemochromatosis of a young girl: detection of early iron deposition in liver cell lysosomes using transmission electron microscopy and electron energy loss spectroscopy. Jonas, L., Fulda, G., Kyank, U., Steiner, M., Sarich, W., Nizze, H. Ultrastructural pathology. (2002) [Pubmed]
  10. Elemental mapping in natural rubber latex films by electron energy loss spectroscopy associated with transmission electron microscopy. Rippel, M.M., Paula Leite, C.A., Galembeck, F. Anal. Chem. (2002) [Pubmed]
  11. Electron energy loss spectroscopy for analysis of inhaled ultrafine particles in rat lungs. Kapp, N., Kreyling, W., Schulz, H., Im Hof, V., Gehr, P., Semmler, M., Geiser, M. Microsc. Res. Tech. (2004) [Pubmed]
  12. Electron spectroscopic imaging (ESI) and electron energy loss spectroscopy (EELS) of multilamellar bodies and multilamellar body-like structures in tannic acid-treated alveolar septal cells. Ochs, M., Fehrenbach, H., Richter, J. J. Histochem. Cytochem. (1994) [Pubmed]
  13. Evaporated germanium films as supports for microanalysis of carbon and silicon containing specimens. Johansen, B.V., Ormstad, H. Microsc. Res. Tech. (1997) [Pubmed]
  14. Inner shell excitation spectroscopy of biphenyl and substituted biphenyls: probing ring-ring delocalization. Wang, J., Cooper, G., Tulumello, D., Hitchcock, A.P. The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment & general theory. (2005) [Pubmed]
  15. Developments in the dynamical theory of high energy electron reflection. Ma, Y., Marks, L.D. Microsc. Res. Tech. (1992) [Pubmed]
  16. A sub-50meV spectrometer and energy filter for use in combination with 200kV monochromated (S)TEMs. Brink, H.A., Barfels, M.M., Burgner, R.P., Edwards, B.N. Ultramicroscopy. (2003) [Pubmed]
  17. A high-sensitivity CCD system for parallel electron energy-loss spectroscopy (CCD for EELS). Tang, Z., Ho, R., Xu, Z., Shao, Z., Somlyo, A.P. Journal of microscopy. (1994) [Pubmed]
  18. Elemental composition of pyroantimonate precipitates analysed by electron spectroscopic imaging (ESI) and electron energy-loss spectroscopy (EELS) in vitellogenic ovarian follicles of Drosophila. Heinrich, U.R., Gutzeit, H.O., Kreutz, W. Journal of microscopy. (1991) [Pubmed]
  19. Oxygen 1s ELNES study of perovskites (Ca,Sr,Ba)TiO3. Wu, Z., Langenhorst, F., Seifert, F., Paris, E., Marcelli, A. Journal of synchrotron radiation. (2001) [Pubmed]
  20. Electron energy-loss spectroscopy study of thin film hafnium aluminates for novel gate dielectrics. Stemmer, S., Chen, Z.Q., Zhu, W.J., Ma, T.P. Journal of microscopy. (2003) [Pubmed]
 
WikiGenes - Universities