The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Electrons

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

High impact information on Electrons

  • The PsaC subunit of photosystem I provides an essential lysine residue for fast electron transfer to ferredoxin [1].
  • Using a kinetically fast electron hole trap, N(4)-cyclopropylcytosine ((CP)C), here we show that hole migration must involve also the higher-energy pyrimidine bases [2].
  • These results indicate that proton transfer from the hydroxyl group of Ser-L223 or Thr-L223 is required for fast electron and proton transfer associated with the formation of the dihydroquinone QH2 [3].
  • The luminal helix l of PsaB is essential for recognition of plastocyanin or cytochrome c6 and fast electron transfer to photosystem I in Chlamydomonas reinhardtii [4].
  • We have measured the first state-resolved, absolute cross sections for positron excitation of electronic states of an atom or molecule using a high resolution (Delta E approximately 25 meV FWHM) beam of positrons from a Penning-Malmberg trap [5].
 

Biological context of Electrons

 

Anatomical context of Electrons

 

Associations of Electrons with chemical compounds

  • The iron-sulfur center and the flavin are about 9 A apart, which allows a fast electron transfer [8].
  • NADP(H) binding is essential for fast electron transfer through the flavoprotein domain of the fusion protein P450BM3 [9].
  • Tyr218 and Lys85 may have a role in the recognition/binding process for ascorbate and are indispensable for the fast electron transfer reaction [10].
  • It is suggested that the detergent-induced fraction of fast electron transfer is most likely due to alteration of the environment of the quinone in the PsaA branch of cofactors and is not the result of a change in the directionality of electron transfer [11].
  • The cyanide-inhibited ba3 oxidizes cyt c522 quickly (k approximately 5 x 10(6) M-1 s-1 at 25 degrees C) and selectively, with an activation energy E of 10.9 +/- 0.9 kcal mol-1, but slowly oxidizes ruthenium hexamine, a fast electron donor for the mitochondrial enzyme [12].
 

Gene context of Electrons

 

Analytical, diagnostic and therapeutic context of Electrons

References

  1. The PsaC subunit of photosystem I provides an essential lysine residue for fast electron transfer to ferredoxin. Fischer, N., Hippler, M., Sétif, P., Jacquot, J.P., Rochaix, J.D. EMBO J. (1998) [Pubmed]
  2. Long-range oxidative damage to cytosines in duplex DNA. Shao, F., O'Neill, M.A., Barton, J.K. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  3. Pathway of proton transfer in bacterial reaction centers: replacement of serine-L223 by alanine inhibits electron and proton transfers associated with reduction of quinone to dihydroquinone. Paddock, M.L., McPherson, P.H., Feher, G., Okamura, M.Y. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  4. The luminal helix l of PsaB is essential for recognition of plastocyanin or cytochrome c6 and fast electron transfer to photosystem I in Chlamydomonas reinhardtii. Sommer, F., Drepper, F., Hippler, M. J. Biol. Chem. (2002) [Pubmed]
  5. Excitation of electronic states of Ar, H(2), and N(2) by positron impact. Sullivan, J.P., Marler, J.P., Gilbert, S.J., Buckman, S.J., Surko, C.M. Phys. Rev. Lett. (2001) [Pubmed]
  6. The mechanism of adenosylmethionine-dependent activation of methionine synthase: a rapid kinetic analysis of intermediates in reductive methylation of Cob(II)alamin enzyme. Jarrett, J.T., Hoover, D.M., Ludwig, M.L., Matthews, R.G. Biochemistry (1998) [Pubmed]
  7. Rubidium-82 kinetics after coronary occlusion: temporal relation of net myocardial accumulation and viability in open-chested dogs. Goldstein, R.A. J. Nucl. Med. (1986) [Pubmed]
  8. X-ray crystal structure of benzoate 1,2-dioxygenase reductase from Acinetobacter sp. strain ADP1. Karlsson, A., Beharry, Z.M., Matthew Eby, D., Coulter, E.D., Neidle, E.L., Kurtz, D.M., Eklund, H., Ramaswamy, S. J. Mol. Biol. (2002) [Pubmed]
  9. Functional interactions in cytochrome P450BM3. Evidence that NADP(H) binding controls redox potentials of the flavin cofactors. Murataliev, M.B., Feyereisen, R. Biochemistry (2000) [Pubmed]
  10. Ascorbate inhibits the carbethoxylation of two histidyl and one tyrosyl residues indispensable for the transmembrane electron transfer reaction of cytochrome b561. Takeuchi, F., Kobayashi, K., Tagawa, S., Tsubaki, M. Biochemistry (2001) [Pubmed]
  11. Removal of PsaF alters forward electron transfer in photosystem I: evidence for fast reoxidation of QK-A in subunit deletion mutants of Synechococcus sp. PCC 7002. Van Der Est, A., Valieva, A.I., Kandrashkin, Y.E., Shen, G., Bryant, D.A., Golbeck, J.H. Biochemistry (2004) [Pubmed]
  12. Kinetic properties of ba3 oxidase from Thermus thermophilus: effect of temperature. Giuffrè, A., Forte, E., Antonini, G., D'Itri, E., Brunori, M., Soulimane, T., Buse, G. Biochemistry (1999) [Pubmed]
  13. Time-resolved spectroscopic study on photoinduced electron-transfer processes in Zn(II)porphyrin-Zn(II)chlorin-fullerene triad. Ha, J.H., Cho, H.S., Kim, D., Lee, J.C., Kim, T.Y., Shim, Y.K. Chemphyschem : a European journal of chemical physics and physical chemistry. (2003) [Pubmed]
  14. Diethyl pyrocarbonate modification abolishes fast electron accepting ability of cytochrome b561 from ascorbate but does not influence electron donation to monodehydroascorbate radical: identification of the modification sites by mass spectrometric analysis. Tsubaki, M., Kobayashi, K., Ichise, T., Takeuchi, F., Tagawa, S. Biochemistry (2000) [Pubmed]
  15. Fast electron transfer processes in cytochrome C and related metalloproteins. Simic, M.G., Taub, I.A. Biophys. J. (1978) [Pubmed]
  16. Interaction of NADP(H) with oxidized and reduced P450 reductase during catalysis. Studies with nucleotide analogues. Murataliev, M.B., Feyereisen, R. Biochemistry (2000) [Pubmed]
  17. Co-crystallization and characterization of the photosynthetic reaction center-cytochrome c2 complex from Rhodobacter sphaeroides. Adir, N., Axelrod, H.L., Beroza, P., Isaacson, R.A., Rongey, S.H., Okamura, M.Y., Feher, G. Biochemistry (1996) [Pubmed]
  18. Positron flight in human tissues and its influence on PET image spatial resolution. Sánchez-Crespo, A., Andreo, P., Larsson, S.A. Eur. J. Nucl. Med. Mol. Imaging (2004) [Pubmed]
 
WikiGenes - Universities