The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Nitrogen-13     azane

Synonyms: Ammonia N13, Ammonia N 13, Ammonia (13N), CHEMBL1201189, MOLI001000, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of ammonia

 

High impact information on ammonia

  • Positron emission tomography (PET) can be used with nitrogen-13-ammonia (13NH3) to estimate regional myocardial blood flow, and with fluorine-18-deoxyglucose (18FDG) to measure exogenous glucose uptake by the myocardium [6].
  • Intratracheal administration to mice of radioactive nitrite labeled with nitrogen-13 (13NO2-) (half-life, 9.96 minutes) in dosages that do not cause pharmacological perturbation reveals that oxidative and reductive reactions occur in different organs [7].
  • Nitrogen-13 from both anions was distributed uniformly between plasma and blood cells [8].
  • METHODS AND RESULTS--Thirty-seven patients (mean age, 59 +/- 11 years) with coronary artery disease and impaired left ventricular function (ejection fraction, 34 +/- 10%) were studied with PET using FDG and [13N]ammonia before surgical coronary revascularization (3 +/- 1 grafts per patient) [9].
  • Following a bolus injection of tracer quantities of [13N]ammonia into the portal vein, the single pass extraction was approximately 93%, in good agreement with the portal-hepatic vein difference of approximately 90% [10].
 

Chemical compound and disease context of ammonia

 

Biological context of ammonia

 

Anatomical context of ammonia

  • The amount of label recovered in the right cerebral hemisphere, 5 s after a rapid bolus injection of [13N]ammonia via the right common carotid artery, was found to be independent of ammonia concentration within the bolus over a 1000-fold range [20].
  • After infusion of physiological concentrations of [13N]ammonia for 10 min via one internal carotid artery, the relative specific activities of glutamate, glutamine (alpha-amino), and glutamine (amide) in brain were approximately 1:5:400, respectively [20].
  • Conventional cardiac PET modeling techniques for [13N]ammonia flow determination do not fully account for the effects of spillover of activity from the right ventricle (RV) onto the activity in the myocardial septum [21].
  • PET tomographic imaging of the human heart, pancreas, and liver with nitrogen-13 derived from [13N]-L-glutamate [22].
  • Bolus injection of [13N]ammonia into the femoral vein of pentobarbital-anesthetized rats was followed by rapid clearance from the blood and first-pass extraction of nearly 30% by the lungs [19].
 

Associations of ammonia with other chemical compounds

 

Gene context of ammonia

  • Dynamic PET using [13N]ammonia was performed in patients with primary hepatocellular carcinoma (hepatoma) [27].
  • Activity of glutamine synthetase was coupled to activity of nitrogenase in isolated heterocysts as shown by acetylene-inhibitable formation of [13N]NH3 and of amidelabeled [13N]glutamine form [13N]N2 [28].
  • Furthermore, we studied MBF as assessed by [13N]ammonia in 15 IDDM patients without coronary artery disease [29].
  • [13N]Ammonia and L-[amide-13N]glutamine metabolism in glutaminase-sensitive and glutaminase-resistant murine tumors [30].
  • Separation and further purification of ammonia were performed with GC, leading to 5s pulses (1.1 ml STP) with 3.5 +/- 0.5 MBq [13N]NH3 with a high chemical and radiochemical purity suited for positron emission profiling (PEP) [31].
 

Analytical, diagnostic and therapeutic context of ammonia

  • METHODS AND RESULTS: Myocardial perfusion with [13N]ammonia was estimated from dynamic time-activity curves at baseline and 3 hours following application of either a 0.4 mg/h GTN skin patch (n = 10) or a placebo patch (n = 10) in a double-blind parallel design [2].
  • In large regions of interest (5 cm3), a good correlation between the microsphere method and [13N]ammonia (with metabolite correction) was obtained (y = 3 + 0.78x, r = 0.94) [3].
  • Noninvasive evaluation of regional myocardial perfusion in 112 patients using a mobile scintillation camera and intravenous nitrogen-13 labeled ammonia [32].
  • OBJECTIVES: Regional myocardial blood flow (MBF) and flow reserve measurements using nitrogen-13 (N-13) ammonia positron emission tomography (PET) were compared with quantitative coronary angiography to determine their utility in the detection of significant coronary artery disease (CAD) [33].
  • METHODS: PET studies of myocardial sympathetic innervation, myocardial perfusion and oxygen utilization using [11C]hydroxyephedrine (HED), [13N]ammonia and 1-[11C]acetate, respectively, were performed before and approximately 2 and 8 wk after surgical left thoracotomy and regional chemical sympathetic denervation (n = 5) [34].

References

  1. Relation between coronary "steal" and contractile function at rest in collateral-dependent myocardium of humans with ischemic heart disease. Holmvang, G., Fry, S., Skopicki, H.A., Abraham, S.A., Alpert, N.M., Fischman, A.J., Picard, M.H., Gewirtz, H. Circulation (1999) [Pubmed]
  2. Redistribution of myocardial blood flow with topical nitroglycerin in patients with coronary artery disease. Fallen, E.L., Nahmias, C., Scheffel, A., Coates, G., Beanlands, R., Garnett, E.S. Circulation (1995) [Pubmed]
  3. Direct comparison of [13N]ammonia and [15O]water estimates of perfusion with quantification of regional myocardial blood flow by microspheres. Bol, A., Melin, J.A., Vanoverschelde, J.L., Baudhuin, T., Vogelaers, D., De Pauw, M., Michel, C., Luxen, A., Labar, D., Cogneau, M. Circulation (1993) [Pubmed]
  4. Effect of short-term cardiovascular conditioning and low-fat diet on myocardial blood flow and flow reserve. Czernin, J., Barnard, R.J., Sun, K.T., Krivokapich, J., Nitzsche, E., Dorsey, D., Phelps, M.E., Schelbert, H.R. Circulation (1995) [Pubmed]
  5. Can nitrogen-13 ammonia kinetic modeling define myocardial viability independent of fluorine-18 fluorodeoxyglucose? Beanlands, R.S., deKemp, R., Scheffel, A., Nahmias, C., Garnett, E.S., Coates, G., Johansen, H.L., Fallen, E. J. Am. Coll. Cardiol. (1997) [Pubmed]
  6. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. Tillisch, J., Brunken, R., Marshall, R., Schwaiger, M., Mandelkern, M., Phelps, M., Schelbert, H. N. Engl. J. Med. (1986) [Pubmed]
  7. Gut reactions of radioactive nitrite after intratracheal administration in mice. Thayer, J.R., Chasko, J.H., Swartz, L.A., Parks, N.J. Science (1982) [Pubmed]
  8. Nitrogen-13-labeled nitrite and nitrate: distribution and metabolism after intratracheal administration. Parks, N.J., Krohn, K.J., Mathis, C.A., Chasko, J.H., Geiger, K.R., Gregor, M.E., Peek, N.F. Science (1981) [Pubmed]
  9. Relation of regional function, perfusion, and metabolism in patients with advanced coronary artery disease undergoing surgical revascularization. vom Dahl, J., Eitzman, D.T., al-Aouar, Z.R., Kanter, H.L., Hicks, R.J., Deeb, G.M., Kirsh, M.M., Schwaiger, M. Circulation (1994) [Pubmed]
  10. Short-term metabolic fate of [13N]ammonia in rat liver in vivo. Cooper, A.J., Nieves, E., Coleman, A.E., Filc-DeRicco, S., Gelbard, A.S. J. Biol. Chem. (1987) [Pubmed]
  11. Effects of short-term treatment of hyperlipidemia on coronary vasodilator function and myocardial perfusion in regions having substantial impairment of baseline dilator reverse. Huggins, G.S., Pasternak, R.C., Alpert, N.M., Fischman, A.J., Gewirtz, H. Circulation (1998) [Pubmed]
  12. Dynamic positron tomographic imaging with nitrogen-13 glutamate in patients with coronary artery disease: comparison with nitrogen-13 ammonia and fluorine-18 fluorodeoxyglucose imaging. Krivokapich, J., Barrio, J.R., Huang, S.C., Schelbert, H.R. J. Am. Coll. Cardiol. (1990) [Pubmed]
  13. Relation of left ventricular perfusion and wall motion with metabolic activity in persistent defects on thallium-201 tomography in healed myocardial infarction. Tamaki, N., Yonekura, Y., Yamashita, K., Senda, M., Saji, H., Hashimoto, T., Fudo, T., Kambara, H., Kawai, C., Ban, T. Am. J. Cardiol. (1988) [Pubmed]
  14. Quantitative scanning of soft-tissue sarcomas with nitrogen-13-labeled L-glutamate. Sordillo, P.P., Reiman, R.E., Benua, R.S., Gelbard, A.S., Magill, G.B., Rosen, G., Laughlin, J.S. Cancer Invest. (1983) [Pubmed]
  15. Positron emission tomographic measurements of absolute regional myocardial blood flow permits identification of nonviable myocardium in patients with chronic myocardial infarction. Gewirtz, H., Fischman, A.J., Abraham, S., Gilson, M., Strauss, H.W., Alpert, N.M. J. Am. Coll. Cardiol. (1994) [Pubmed]
  16. Coronary vasodilation is impaired in both hypertrophied and nonhypertrophied myocardium of patients with hypertrophic cardiomyopathy: a study with nitrogen-13 ammonia and positron emission tomography. Camici, P., Chiriatti, G., Lorenzoni, R., Bellina, R.C., Gistri, R., Italiani, G., Parodi, O., Salvadori, P.A., Nista, N., Papi, L. J. Am. Coll. Cardiol. (1991) [Pubmed]
  17. Quantitative evaluation of regional pulmonary ventilation using PET and nitrogen-13 gas. Senda, M., Murata, K., Itoh, H., Yonekura, Y., Torizuka, K. J. Nucl. Med. (1986) [Pubmed]
  18. Simultaneous measurement of myocardial oxygen consumption and blood flow using [1-carbon-11]acetate. Sun, K.T., Yeatman, L.A., Buxton, D.B., Chen, K., Johnson, J.A., Huang, S.C., Kofoed, K.F., Weismueller, S., Czernin, J., Phelps, M.E., Schelbert, H.R. J. Nucl. Med. (1998) [Pubmed]
  19. Metabolism of [13N]ammonia in rat lung. Cooper, A.J., Freed, B.R. Neurochem. Int. (2005) [Pubmed]
  20. The metabolic fate of 13N-labeled ammonia in rat brain. Cooper, A.J., McDonald, J.M., Gelbard, A.S., Gledhill, R.F., Duffy, T.E. J. Biol. Chem. (1979) [Pubmed]
  21. Dual spillover problem in the myocardial septum with nitrogen-13-ammonia flow quantitation. Hove, J.D., Gambhir, S.S., Kofoed, K.F., Kelbaek, H., Schelbert, H.R., Phelps, M.E. J. Nucl. Med. (1998) [Pubmed]
  22. PET tomographic imaging of the human heart, pancreas, and liver with nitrogen-13 derived from [13N]-L-glutamate. Myers, W.G., Bigler, R.E., Benua, R.S., Graham, M.C., Laughlin, J.S. European journal of nuclear medicine. (1983) [Pubmed]
  23. Evaluation of myocardial ischemia using a rest metabolism/stress perfusion protocol with fluorine-18 deoxyglucose/technetium-99m MIBI and dual-isotope simultaneous-acquisition single-photon emission computed tomography. Sandler, M.P., Videlefsky, S., Delbeke, D., Patton, J.A., Meyerowitz, C., Martin, W.H., Ohana, I. J. Am. Coll. Cardiol. (1995) [Pubmed]
  24. No difference in cardiac event-free survival between positron emission tomography-guided and single-photon emission computed tomography-guided patient management: a prospective, randomized comparison of patients with suspicion of jeopardized myocardium. Siebelink, H.M., Blanksma, P.K., Crijns, H.J., Bax, J.J., van Boven, A.J., Kingma, T., Piers, D.A., Pruim, J., Jager, P.L., Vaalburg, W., van der Wall, E.E. J. Am. Coll. Cardiol. (2001) [Pubmed]
  25. Altered myocardial vasodilatation in patients with hypertriglyceridemia in anatomically normal coronary arteries. Yokoyama, I., Ohtake, T., Momomura, S., Yonekura, K., Kobayakawa, N., Aoyagi, T., Sugiura, S., Sasaki, Y., Omata, M. Arterioscler. Thromb. Vasc. Biol. (1998) [Pubmed]
  26. Quantitative scanning of osteogenic sarcoma with nitrogen-13-labeled L-glutamate. Gelbard, A.S., Benua, R.S., Laughlin, J.S., Rosen, G., Reiman, R.E., McDonald, J.M. J. Nucl. Med. (1979) [Pubmed]
  27. Imaging of the hepatocellular carcinoma using dynamic positron emission tomography with nitrogen-13 ammonia. Hayashi, N., Tamaki, N., Yonekura, Y., Senda, M., Saji, H., Yamamoto, K., Konishi, J., Torizuka, K. J. Nucl. Med. (1985) [Pubmed]
  28. Formation of glutamine from [13n]ammonia, [13n]dinitrogen, and [14C]glutamate by heterocysts isolated from Anabaena cylindrica. Thomas, J., Meeks, J.C., Wolk, C.P., Shaffer, P.W., Austin, S.M. J. Bacteriol. (1977) [Pubmed]
  29. Myocardial blood flow and glucose metabolism in diabetes mellitus. Meyer, C., Schwaiger, M. Am. J. Cardiol. (1997) [Pubmed]
  30. [13N]Ammonia and L-[amide-13N]glutamine metabolism in glutaminase-sensitive and glutaminase-resistant murine tumors. Rosenspire, K.C., Gelbard, A.S., Cooper, A.J., Schmid, F.A., Roberts, J. Biochim. Biophys. Acta (1985) [Pubmed]
  31. Production of chemically pure gaseous [13N]NH3 pulses for PEP studies using a modified DeVarda reduction. Sobczy, D.P., van Grondelle, J., de Jong, A.M., de Voigt, M.J., van Santen, R.A. Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine. (2002) [Pubmed]
  32. Noninvasive evaluation of regional myocardial perfusion in 112 patients using a mobile scintillation camera and intravenous nitrogen-13 labeled ammonia. Walsh, W.F., Harper, P.V., Resnekov, L., Fill, H. Circulation (1976) [Pubmed]
  33. Assessment of diagnostic performance of quantitative flow measurements in normal subjects and patients with angiographically documented coronary artery disease by means of nitrogen-13 ammonia and positron emission tomography. Muzik, O., Duvernoy, C., Beanlands, R.S., Sawada, S., Dayanikli, F., Wolfe, E.R., Schwaiger, M. J. Am. Coll. Cardiol. (1998) [Pubmed]
  34. PET imaging of oxidative metabolism abnormalities in sympathetically denervated canine myocardium. Hutchins, G.D., Chen, T., Carlson, K.A., Fain, R.L., Winkle, W., Vavrek, T., Mock, B.H., Zipes, D.P. J. Nucl. Med. (1999) [Pubmed]
 
WikiGenes - Universities