The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Comparative in vitro activities of GAR-936 against aerobic and anaerobic animal and human bite wound pathogens.

GAR-936 is a new semisynthetic glycylcycline with a broad antibacterial spectrum, including tetracycline-resistant strains. The in vitro activities of GAR-936, minocycline, doxycycline, tetracycline, moxifloxacin, penicillin G, and erythromycin were determined by agar dilution methods against 268 aerobic and 148 anaerobic strains of bacteria (including Pasteurella, Eikenella, Moraxella, Bergeyella, Neisseria, EF-4, Bacteroides, Prevotella, Porphyromonas, Fusobacterium, Staphylococcus, Streptococcus, Enterococcus, Corynebacterium, Propionibacterium, Peptostreptococcus, and Actinomyces) isolated from infected human and animal bite wounds in humans, including strains resistant to commonly used antimicrobials. GAR-936 was very active, with an MIC at which 90% of the strains are inhibited (MIC(90)) of < or =0.25 microg/ml, against all aerobic gram-positive and -negative strains, including tetracycline-resistant strains of Enterococcus, Streptococcus, and coagulase-negative staphylococci, except for Eikenella corrodens (MIC(90), < or =4 microg/ml). GAR-936 was also very active against all anaerobic species, including tetracycline-, doxycycline-, and minocycline-resistant strains of Prevotella spp., Porphyromonas spp., Bacteroides tectum, and Peptostreptococcus spp., with an MIC(90) of < or =0.25 microg/ml. Erythromycin- and moxifloxacin-resistant fusobacteria were susceptible to GAR-936, with an MIC(90) of 0.06 microg/ml.[1]


  1. Comparative in vitro activities of GAR-936 against aerobic and anaerobic animal and human bite wound pathogens. Goldstein, E.J., Citron, D.M., Merriam, C.V., Warren, Y., Tyrrell, K. Antimicrob. Agents Chemother. (2000) [Pubmed]
WikiGenes - Universities