The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Mice with targeted mutation of peroxiredoxin 6 develop normally but are susceptible to oxidative stress.

Reactive oxygen species, especially hydrogen peroxide, are important in cellular signal transduction. However, excessive amounts of these species damage tissues and cells by oxidizing virtually all important biomolecules. Peroxiredoxin 6 (PRDX6) (also called antioxidant protein 2, or AOP2) is a novel peroxiredoxin family member whose function in vivo is unknown. Through immunohistochemistry, we have determined that the PRDX6 protein was widely expressed in every tissue examined, most abundantly in epithelial cells. It was found in cytosol, but not in membranes, organelles, and nuclei fractions. Prdx6 mRNA was also expressed in every tissue examined. The widespread expression of Prdx6 suggested that its functions were quite important. To determine these functions, we generated Prdx6-targeted mutant (Prdx6-/-) mice, confirmed the gene disruption by Southern blots, PCR, RT-PCR, Western blots, and immunohistochemistry, and compared the effects of paraquat, hydrogen peroxide, and t-butyl hydroperoxide on Prdx6-/- and wild-type (Prdx6+/+) macrophages, and of paraquat on Prdx6-/- and Prdx6+/+ mice. Prdx6-/- macrophages had higher hydrogen peroxide levels, and lower survival rates; Prdx6-/- mice had significantly lower survival rates, more severe tissue damage, and higher protein oxidation levels. Additionally, there were no differences in the mRNA expression levels of other peroxiredoxins, glutathione peroxidases, catalase, superoxide dismutases, thioredoxins, and glutaredoxins between normal Prdx6-/- and Prdx6+/+ mice and those injected with paraquat. Our study provides in vivo evidence that PRDX6 is a unique non-redundant antioxidant that functions independently of other peroxiredoxins and antioxidant proteins.[1]


  1. Mice with targeted mutation of peroxiredoxin 6 develop normally but are susceptible to oxidative stress. Wang, X., Phelan, S.A., Forsman-Semb, K., Taylor, E.F., Petros, C., Brown, A., Lerner, C.P., Paigen, B. J. Biol. Chem. (2003) [Pubmed]
WikiGenes - Universities