The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Induction and characterization of a microsomal flavonoid 3'-hydroxylase from parsley cell cultures.

A microsomal preparation from irradiated parsley cell cultures catalyses the NADPH and dioxygen-dependent hydroxylation of (S)-naringenin [(S)-5, 7, 4'-trihydroxyflavanone] to eriodictyol (5, 7, 3', 4'-tetrahydroxyflavanone). Dihydrokaempferol, kaempferol, and apigenin were also substrates for the 3'-hydroxylase reaction. In contrast prunin (naringenin 7-O-beta-glucoside) was not converted by the enzyme. The microsomal preparation, which also contains cinnamate 4-hydroxylase, did not catalyse hydroxylation of 4-coumaric acid to caffeic acid. 3'-Hydroxylase activity is partially inhibited by carbon monoxide in the presence of oxygen as well as by cytochrome c and NADP+. These properties suggest that the enzyme is a cytochrome P-450-dependent flavonoid 3'-monooxygenase. Pronounced differences in the inhibition of flavonoid 3'-hydroxylase and cinnamate 4-hydroxylase were found with EDTA, potassium cyanide and N-ethylmaleimide. Irradiation of the cell cultures led to increase of flavonoid 3'-hydroxylase activity with a maximum at about 23 h after onset of irradiation and subsequent decrease. This is similar to light-induction of phenylalanine ammonialyase and cinnamate 4-hydroxylase. In contrast, treatment of the cell cultures with a glucan elicitor from Phytophthora megasperma f. sp. glycinea did not induce flavonoid 3'-hydroxylase nor chalcone isomerase but caused a strong increase in the activities of phenylalanine ammonia-lyase, cinnamate 4-hydroxylase, and NADPH--cytochrome reductase. The results prove that flavonoid 3'-hydroxylase and cinnamate 4-hydroxylase are two different microsomal monooxygenases.[1]


  1. Induction and characterization of a microsomal flavonoid 3'-hydroxylase from parsley cell cultures. Hagmann, M.L., Heller, W., Grisebach, H. Eur. J. Biochem. (1983) [Pubmed]
WikiGenes - Universities