The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Campherol     3,5,7-trihydroxy-2-(4- hydroxyphenyl)chrome...

Synonyms: Kaemferol, Kampcetin, Kampferol, Kampherol, Kempferol, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Kaemferol

 

High impact information on Kaemferol

 

Chemical compound and disease context of Kaemferol

 

Biological context of Kaemferol

 

Anatomical context of Kaemferol

 

Associations of Kaemferol with other chemical compounds

 

Gene context of Kaemferol

 

Analytical, diagnostic and therapeutic context of Kaemferol

References

  1. Inhibition of estrogen receptor alpha expression and function in MCF-7 cells by kaempferol. Hung, H. J. Cell. Physiol. (2004) [Pubmed]
  2. Augmentation of differentiation and gap junction function by kaempferol in partially differentiated colon cancer cells. Nakamura, Y., Chang, C.C., Mori, T., Sato, K., Ohtsuki, K., Upham, B.L., Trosko, J.E. Carcinogenesis (2005) [Pubmed]
  3. Kaempferol-induced growth inhibition and apoptosis in A549 lung cancer cells is mediated by activation of MEK-MAPK. Nguyen, T.T., Tran, E., Ong, C.K., Lee, S.K., Do, P.T., Huynh, T.T., Nguyen, T.H., Lee, J.J., Tan, Y., Ong, C.S., Huynh, H. J. Cell. Physiol. (2003) [Pubmed]
  4. Phytoestrogen kaempferol (3,4',5,7-tetrahydroxyflavone) protects PC12 and T47D cells from beta-amyloid-induced toxicity. Roth, A., Schaffner, W., Hertel, C. J. Neurosci. Res. (1999) [Pubmed]
  5. Flavonoid intake and colorectal cancer risk in men and women. Lin, J., Zhang, S.M., Wu, K., Willett, W.C., Fuchs, C.S., Giovannucci, E. Am. J. Epidemiol. (2006) [Pubmed]
  6. Bottlenecks for metabolic engineering of isoflavone glycoconjugates in Arabidopsis. Liu, C.J., Blount, J.W., Steele, C.L., Dixon, R.A. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  7. Accumulation of soluble and wall-bound indolic metabolites in Arabidopsis thaliana leaves infected with virulent or avirulent Pseudomonas syringae pathovar tomato strains. Hagemeier, J., Schneider, B., Oldham, N.J., Hahlbrock, K. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  8. Knock-out mutants from an En-1 mutagenized Arabidopsis thaliana population generate phenylpropanoid biosynthesis phenotypes. Wisman, E., Hartmann, U., Sagasser, M., Baumann, E., Palme, K., Hahlbrock, K., Saedler, H., Weisshaar, B. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  9. Phytoestrogens/flavonoids reverse breast cancer resistance protein/ABCG2-mediated multidrug resistance. Imai, Y., Tsukahara, S., Asada, S., Sugimoto, Y. Cancer Res. (2004) [Pubmed]
  10. Activation and inhibition of benzo(a)pyrene and aflatoxin B1 metabolism in human liver microsomes by naturally occurring flavonoids. Buening, M.K., Chang, R.L., Huang, M.T., Fortner, J.G., Wood, A.W., Conney, A.H. Cancer Res. (1981) [Pubmed]
  11. Protective effects of flavonoids on the cytotoxicity of linoleic acid hydroperoxide toward rat pheochromocytoma PC12 cells. Sasaki, N., Toda, T., Kaneko, T., Baba, N., Matsuo, M. Chem. Biol. Interact. (2003) [Pubmed]
  12. Flavonol synthase from Citrus unshiu is a bifunctional dioxygenase. Lukacin, R., Wellmann, F., Britsch, L., Martens, S., Matern, U. Phytochemistry (2003) [Pubmed]
  13. Simultaneous determination of quercetin, kaempferol and isorhamnetin accumulated human breast cancer cells, by high-performance liquid chromatography. Wang, Y., Cao, J., Weng, J.H., Zeng, S. Journal of pharmaceutical and biomedical analysis. (2005) [Pubmed]
  14. Combinatorial biosynthesis of flavones and flavonols in Escherichia coli. Miyahisa, I., Funa, N., Ohnishi, Y., Martens, S., Moriguchi, T., Horinouchi, S. Appl. Microbiol. Biotechnol. (2006) [Pubmed]
  15. Modulation of apoptosis in HaCaT keratinocytes via differential regulation of ERK signaling pathway by flavonoids. Lee, E.R., Kang, Y.J., Kim, J.H., Lee, H.T., Cho, S.G. J. Biol. Chem. (2005) [Pubmed]
  16. Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. Brusselmans, K., Vrolix, R., Verhoeven, G., Swinnen, J.V. J. Biol. Chem. (2005) [Pubmed]
  17. Dietary Flavonoids Attenuate Tumor Necrosis Factor {alpha}-induced Adhesion Molecule Expression in Human Aortic Endothelial Cells: STRUCTURE-FUNCTION RELATIONSHIPS AND ACTIVITY AFTER FIRST PASS METABOLISM. Lotito, S.B., Frei, B. J. Biol. Chem. (2006) [Pubmed]
  18. Flavonoid accumulation patterns of transparent testa mutants of arabidopsis. Peer, W.A., Brown, D.E., Tague, B.W., Muday, G.K., Taiz, L., Murphy, A.S. Plant Physiol. (2001) [Pubmed]
  19. Differential activity of kaempferol and quercetin in attenuating tumor necrosis factor receptor family signaling in bone cells. Pang, J.L., Ricupero, D.A., Huang, S., Fatma, N., Singh, D.P., Romero, J.R., Chattopadhyay, N. Biochem. Pharmacol. (2006) [Pubmed]
  20. Modulation of multidrug resistance protein 1 (MRP1/ABCC1) transport and atpase activities by interaction with dietary flavonoids. Leslie, E.M., Mao, Q., Oleschuk, C.J., Deeley, R.G., Cole, S.P. Mol. Pharmacol. (2001) [Pubmed]
  21. Flavonoids inhibit tumor necrosis factor-alpha-induced up-regulation of intercellular adhesion molecule-1 (ICAM-1) in respiratory epithelial cells through activator protein-1 and nuclear factor-kappaB: structure-activity relationships. Chen, C.C., Chow, M.P., Huang, W.C., Lin, Y.C., Chang, Y.J. Mol. Pharmacol. (2004) [Pubmed]
  22. Functional genomics uncovers three glucosyltransferases involved in the synthesis of the major sweet glucosides of Stevia rebaudiana. Richman, A., Swanson, A., Humphrey, T., Chapman, R., McGarvey, B., Pocs, R., Brandle, J. Plant J. (2005) [Pubmed]
  23. Isolation and characterization of cDNAs expressed in the early stages of flavonol-induced pollen germination in petunia. Guyon, V.N., Astwood, J.D., Garner, E.C., Dunker, A.K., Taylor, L.P. Plant Physiol. (2000) [Pubmed]
  24. Suppression of inducible cyclooxygenase and inducible nitric oxide synthase by apigenin and related flavonoids in mouse macrophages. Liang, Y.C., Huang, Y.T., Tsai, S.H., Lin-Shiau, S.Y., Chen, C.F., Lin, J.K. Carcinogenesis (1999) [Pubmed]
  25. Dietary flavonols quercetin and kaempferol are ligands of the aryl hydrocarbon receptor that affect CYP1A1 transcription differentially. Ciolino, H.P., Daschner, P.J., Yeh, G.C. Biochem. J. (1999) [Pubmed]
  26. Effect of Ginkgo biloba extract on procarcinogen-bioactivating human CYP1 enzymes: Identification of isorhamnetin, kaempferol, and quercetin as potent inhibitors of CYP1B1. Chang, T.K., Chen, J., Yeung, E.Y. Toxicol. Appl. Pharmacol. (2006) [Pubmed]
  27. MDR- and CYP3A4-mediated drug-herbal interactions. Pal, D., Mitra, A.K. Life Sci. (2006) [Pubmed]
  28. In vitro glucuronidation of kaempferol and quercetin by human UGT-1A9 microsomes. Oliveira, E.J., Watson, D.G. FEBS Lett. (2000) [Pubmed]
  29. Metabolism of galangin by rat cytochromes P450: relevance to the genotoxicity of galangin. Silva, I.D., Rodrigues, A.S., Gaspar, J., Laires, A., Rueff, J. Mutat. Res. (1997) [Pubmed]
  30. Separation of kaempferols in Impatients balsamina flowers by capillary electrophoresis with electrochemical detection. Hua, L., Peng, Z., Chia, L.S., Goh, N.K., Tan, S.N. Journal of chromatography. A. (2001) [Pubmed]
  31. The analgesic activity of Hedyosmum bonplandianum: flavonoid glycosides. Cárdenas, L.C., Rodríguez, J., Villaverde, M.C., Riguera, R., Cadena, R., Otero, J.A. Planta Med. (1993) [Pubmed]
 
WikiGenes - Universities