The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Involvement of oxidants and oxidant-generating enzyme(s) in tumour-necrosis-factor-alpha-mediated apoptosis: role for lipoxygenase pathway but not mitochondrial respiratory chain.

Cellular signalling by the inflammatory cytokine tumour necrosis factor alpha (TNF alpha) has been suggested to involve generation of low levels of reactive oxygen species (ROS). Certain antioxidants and metal chelators can inhibit cytotoxicity and gene expression in response to TNF alpha in numerous cell types. However, neither the source nor function of TNF alpha-induced oxidant generation is known. Using specific inhibitors, we ruled out involvement of several oxidant-generating enzymes [cyclo-oxygenase (indomethacin), cytochrome P-450 (metyrapone), nitric oxide synthase (NG-methyl-L-arginine), NADPH oxidase (iodonium diphenyl), xanthine oxidase (allopurinol), ribonucleotide reductase (hydroxyurea)] in TNF alpha-mediated apoptosis of the murine fibrosarcoma line, L929. We also demonstrated no role for mitochondrial-derived radicals/respiratory chain in the lytic pathway using specific inhibitors/uncouplers (rotenone, KCN, carboxin, fluoroacetate, antimycin, malonate, carbonyl cyanide p-trifluoromethoxyphenylhydrazone) and chloramphenicol-derived respiration-deficient cells. Significant ROS (H2O2, O2-.) generation was not observed in response to TNF alpha in L929 cells using four separate assays. Also, prevention of intracellular H2O2 removal by inhibition of catalase did not potentiate TNF alpha-mediated cell death. These data suggest that neither H2O2 nor O2-. plays a direct role in TNF alpha cytotoxicity. Finally, we suggest a central role for lipoxygenase in TNF alpha-mediated lysis. Three inhibitors of this radical-generating signalling pathway, including an arachidonate analogue (5,8,11,14-eicosatetraynoic acid), could protect cells against TNF alpha. The inhibitor nordihydroguaiaretic acid is also a radical scavenger, but it could not protect cells from ROS toxicity at concentrations that effectively prevented TNF alpha killing. Therefore protection by nordihydroguaiaretic acid cannot be due to scavenging of cytotoxic H2O or O2-.. The lipoxygenase product, (12S)-hydroxyeicosatetraenoic acid, was also significantly protective. As this analogue can act as a substrate for certain lipoxygenases, this effect may be due to prevention of generation of physiological products.[1]


WikiGenes - Universities