Localization of natriuretic peptide-activated guanylate cyclase mRNAs in the rat brain.
Physiological actions of atrial natriuretic peptide ( ANP) and C-type natriuretic peptide (CNP) are elaborated by membrane-bound natriuretic peptide receptors (NPRs). These receptors possess intracellular guanylate cyclase domains that mobilize cyclic guanosine monophosphate upon binding of peptide. Two distinct NPR subtypes have been described in brain: the NPR-A selectively binds ANP, whereas NPR-B exhibits high affinity for CNP. To define further the potential domains of ANP and CNP action in brain, the present study used in situ hybridization histochemistry to map NPR-A and NPR-B mRNA-expressing cell populations. Significant levels of neuronal NPR-A mRNA expression were observed only in the mitral cell layer of the olfactory bulb, medial habenula, subfornical organ, and area postrema. Expression of NPR-A mRNA was observed in forebrain white matter tracts, suggesting synthesis in glial cells. In contrast, NPR-B mRNA was widely expressed throughout the neuraxis. In the telencephalon, signal was abundant throughout limbic cortex and neocortex, olfactory bulb, hippocampus, and amygdala. Intense NPR-B mRNA hybridization was observed in preoptic-hypothalamic neuroendocrine circuits and in motor nuclei of cranial nerves. Intermediate expression of NPR-B mRNA was observed in brainstem nuclei controlling autonomic function. Labeling for NPR-B but not NPR-A mRNA was observed in pituicytes in the neural lobe of the pituitary and in scattered cells of the anterior pituitary. These results suggest that CNP is the primary biologically active natriuretic peptide in brain. In contrast with NPR-B, NPR-A appears to be expressed largely in restricted cell populations containing high levels of ANP and in circumventricular organs. These data implicate the NPR-A in autoregulation of ANP neurons and central registration of cardiac ANP release.[1]References
- Localization of natriuretic peptide-activated guanylate cyclase mRNAs in the rat brain. Herman, J.P., Dolgas, C.M., Rucker, D., Langub, M.C. J. Comp. Neurol. (1996) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg