The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and nonmalignant hematologic diseases.

Myeloablative conditioning associated with hazardous immediate and late complications is considered as a mandatory first step in preparation for allogeneic blood or marrow transplantation (allogeneic BMT) for the treatment of malignant hematologic disorders and genetic diseases. Immune-mediated graft-versus-leukemia (GVL) effects constitute the major benefit of allogeneic BMT. Therefore, we have introduced the use of relatively nonmyeloablative conditioning before allogeneic BMT aiming for establishing host-versus-graft tolerance for engraftment of donor immunohematopoietic cells for induction of GVL effects to displace residual malignant or genetically abnormal host cells. Our preliminary data in 26 patients with standard indications for allogeneic BMT, including acute leukemia (n = 10); chronic leukemia (n = 8), non-Hodgkin's lymphoma (n = 2), myelodysplastic syndrome (n = 1), multiple myeloma (n = 1), and genetic diseases (n = 4) suggest that nonmyeloablative conditioning including fludarabine, anti-T-lymphocyte globulin, and low-dose busulfan (8 mg/kg) is extremely well tolerated, with no severe procedure-related toxicity. Granulocyte colony-stimulating factor mobilized blood stem cell transplantation with standard dose of cyclosporin A as the sole anti-graft-versus-host disease (GVHD) prophylaxis resulted in stable partial (n = 9) or complete (n = 17) chimerism. In 9 patients absolute neutrophil count (ANC) did not decrease to below 0.1 x 10(9)/L whereas 2 patients never experienced ANC < 0.5 x 10(9)/L. ANC > or = 0.5 x 10(9)/L was accomplished within 10 to 32 (median, 15) days. Platelet counts did not decrease to below 20 x 10(9)/L in 4 patients requiring no platelet support at all; overall platelet counts > 20 x 10(9)/L were achieved within 0 to 35 (median 12) days. Fourteen patients experienced no GVHD at all; severe GVHD (grades 3 and 4) was the single major complication and the cause of death in 4 patients, occurring after early discontinuation of cyclosporine A. Relapse was reversed by allogeneic cell therapy in 2/3 cases, currently with no residual host DNA (male) by cytogenetic analysis and polymerase chain reaction. To date, with an observation period extending over 1 year (median 8 months), 22 of 26 patients (85%) treated by allogeneic nonmyeloablative stem cell transplantation are alive, and 21 (81%) are disease-free. The actuarial probability of disease-free survival at 14 months is 77.5% (95% confidence interval, 53% to 90%). Successful eradication of malignant and genetically abnormal host hematopoietic cells by allogeneic nonmyeloablative stem cell transplantation represents a potential new approach for safer treatment of a large variety of clinical syndromes with an indication for allogeneic BMT. Transient mixed chimerism which may protect the host from severe acute GVHD may be successfully reversed postallogeneic BMT with graded increments of donor lymphocyte infusions, thus resulting in eradication of malignant or genetically abnormal progenitor cells of host origin.[1]

References

  1. Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and nonmalignant hematologic diseases. Slavin, S., Nagler, A., Naparstek, E., Kapelushnik, Y., Aker, M., Cividalli, G., Varadi, G., Kirschbaum, M., Ackerstein, A., Samuel, S., Amar, A., Brautbar, C., Ben-Tal, O., Eldor, A., Or, R. Blood (1998) [Pubmed]
 
WikiGenes - Universities