The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Copper(I)     copper(+1) cation

Synonyms: cuprous ion, Copper(1+), cuivre(1+), Cu1+, Cuprous cation, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of copper cation

 

High impact information on copper cation

  • It possesses a long N-terminal tail protruding into the cytosol and containing six copper(I)-binding domains, which are individually folded and capable of binding one copper(I) ion [5].
  • Yeast cox17 solution structure and Copper(I) binding [6].
  • In contrast, the specific cuprous ion chelator neocuproine (2,9-dimethyl-1,10-phenanthroline), as well as other copper-chelating agents, did not protect against H(2)O(2)-induced cellular DNA damage [7].
  • Finally, oxidation of Cu(2+) to Cu(3+) has been studied by cyclic voltammetry in water, which revealed that the redox reaction occurs only when the copper cation is within the diamino-diimido compartment [8].
  • These results demonstrate that DMT1 is a physiologically relevant Cu(1+) transporter in intestinal cells, indicating that intestinal absorption of copper and iron are intertwined [9].
 

Biological context of copper cation

  • The enzymes may play an essential role in copper homeostasis since they exhibit a strikingly similar kinetic activity towards Cu(1+) as substrate [10].
  • Copper(I) complexes of a heavily fluorinated beta-diketiminate ligand: synthesis, electronic properties, and intramolecular aerobic hydroxylation [11].
  • It was concluded that alpha-tocopherol reacts with free copper(II) ion to give more reactive copper(I) ion and may act as a prooxidant for lipid peroxidation in the presence of free copper ion [12].
  • The molecular structures show that copper(II) ions in an asymmetrically elongated octahedral coordination (type 4 + 1 + 1) and in binuclear complex Cu(1) atom has a asymmetrically elongated octahedral coordination (type type 4 + 1 + 1) and Cu(2) atom exhibits a square base pyramidal coordination (type 4 + 1) [13].
 

Associations of copper cation with other chemical compounds

 

Gene context of copper cation

  • PDTC concomitantly increased the intracellular levels of copper, and bathocuproinedisulfonic acid, a non-cell-permeable chelator of Cu(1+), inhibited the PDTC-induced increase in intracellular copper level and reversed the PDTC effects on IkappaB-alpha, NF-kappaB, and MCP-1 [18].
  • Antioxidant capacity micromol/L) was evaluated by measuring the cuprous ion deriving from a known amount of cupric ion [19].
  • Copper(I) interaction with model peptides of WD6 and TM6 domains of Wilson ATPase: regulatory and mechanistic implications [20].

References

  1. Fre1p Cu2+ reduction and Fet3p Cu1+ oxidation modulate copper toxicity in Saccharomyces cerevisiae. Shi, X., Stoj, C., Romeo, A., Kosman, D.J., Zhu, Z. J. Biol. Chem. (2003) [Pubmed]
  2. Copper ions as inhibitors of protein C of soluble methane monooxygenase of Methylococcus capsulatus (Bath). Green, J., Prior, S.D., Dalton, H. Eur. J. Biochem. (1985) [Pubmed]
  3. Copper-metallothionein distribution in the liver of Long-Evans cinnamon rats: studies on immunohistochemical staining, metal determination, gel filtration and electron spin resonance spectroscopy. Sakurai, H., Nakajima, K., Kamada, H., Satoh, H., Otaki, N., Kimura, M., Kawano, K., Hagino, T. Biochem. Biophys. Res. Commun. (1993) [Pubmed]
  4. Stannous and cuprous ion oxidation by Thiobacillus ferrooxidans. Lewis, A.J., Miller, J.D. Can. J. Microbiol. (1977) [Pubmed]
  5. A NMR study of the interaction of a three-domain construct of ATP7A with copper(I) and copper(I)-HAH1: the interplay of domains. Banci, L., Bertini, I., Cantini, F., Chasapis, C.T., Hadjiliadis, N., Rosato, A. J. Biol. Chem. (2005) [Pubmed]
  6. Yeast cox17 solution structure and Copper(I) binding. Abajian, C., Yatsunyk, L.A., Ramirez, B.E., Rosenzweig, A.C. J. Biol. Chem. (2004) [Pubmed]
  7. Intracellular iron, but not copper, plays a critical role in hydrogen peroxide-induced DNA damage. Barbouti, A., Doulias, P.T., Zhu, B.Z., Frei, B., Galaris, D. Free Radic. Biol. Med. (2001) [Pubmed]
  8. Single and double pH-driven Cu2+ translocation with molecular rearrangement in alkyne-functionalized polyamino polyamido ligands. Aurora, A., Boiocchi, M., Dacarro, G., Foti, F., Mangano, C., Pallavicini, P., Patroni, S., Taglietti, A., Zanoni, R. Chemistry (Weinheim an der Bergstrasse, Germany) (2006) [Pubmed]
  9. DMT1, a physiologically relevant apical Cu1+ transporter of intestinal cells. Arredondo, M., Muñoz, P., Mura, C.V., Nùñez, M.T. Am. J. Physiol., Cell Physiol. (2003) [Pubmed]
  10. Cuprous oxidase activity of yeast Fet3p and human ceruloplasmin: implication for function. Stoj, C., Kosman, D.J. FEBS Lett. (2003) [Pubmed]
  11. Copper(I) complexes of a heavily fluorinated beta-diketiminate ligand: synthesis, electronic properties, and intramolecular aerobic hydroxylation. Laitar, D.S., Mathison, C.J., Davis, W.M., Sadighi, J.P. Inorganic chemistry. (2003) [Pubmed]
  12. Interaction of alpha-tocopherol with copper and its effect on lipid peroxidation. Yoshida, Y., Tsuchiya, J., Niki, E. Biochim. Biophys. Acta (1994) [Pubmed]
  13. Novel copper(II)-dien-imidazole/imidazolate-bridged copper(II) complexes. Crystal structure of [Cu(dien)(Him)](ClO4)2 and of [(dien)Cu(mu-im)Cu(dien)](ClO4)3, a homobinuclear model for the copper(II) site of the CuZn-superoxide dismutase. Patel, R.N., Singh, N., Shukla, K.K., Chauhan, U.K. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. (2005) [Pubmed]
  14. Magnetic structure and magnetic properties of synthetic lindgrenite, Cu3(OH)2(MoO4)2. Vilminot, S., André, G., Richard-Plouet, M., Bourée-Vigneron, F., Kurmoo, M. Inorganic chemistry (2006) [Pubmed]
  15. Hydroxyl radical formation from cuprous ion and hydrogen peroxide: a spin-trapping study. Gunther, M.R., Hanna, P.M., Mason, R.P., Cohen, M.S. Arch. Biochem. Biophys. (1995) [Pubmed]
  16. Blue phosphors of dinuclear and mononuclear copper(I) and silver(I) complexes of 3,5-bis(trifluoromethyl)pyrazolate and the related bis(pyrazolyl)borate. Omary, M.A., Rawashdeh-Omary, M.A., Diyabalanage, H.V., Dias, H.V. Inorganic chemistry. (2003) [Pubmed]
  17. Synthesis and evaluation of new chiral nonracemic C(2)-symmetric and unsymmetric 2,2'-bipyridyl ligands. Lyle, M.P., Draper, N.D., Wilson, P.D. Org. Biomol. Chem. (2006) [Pubmed]
  18. Pyrrolidine dithiocarbamate inhibits TNF-alpha-dependent activation of NF-kappaB by increasing intracellular copper level in human aortic smooth muscle cells. Iseki, A., Kambe, F., Okumura, K., Niwata, S., Yamamoto, R., Hayakawa, T., Seo, H. Biochem. Biophys. Res. Commun. (2000) [Pubmed]
  19. Restored antioxidant capacity parallels the immunologic and virologic improvement in children with perinatal human immunodeficiency virus infection receiving highly active antiretroviral therapy. de Martino, M., Chiarelli, F., Moriondo, M., Torello, M., Azzari, C., Galli, L. Clin. Immunol. (2001) [Pubmed]
  20. Copper(I) interaction with model peptides of WD6 and TM6 domains of Wilson ATPase: regulatory and mechanistic implications. Myari, A., Hadjiliadis, N., Fatemi, N., Sarkar, B. J. Inorg. Biochem. (2004) [Pubmed]
 
WikiGenes - Universities