The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Cuproid     chlorocopper

Synonyms: Kirticopper, Cu-lyt, Chlorid medny, AGN-PC-0CQNYC, AG-H-10634, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of chlorocopper

  • Mature virus capsids lose their ability to enhance gene delivery and become noninfectious after exposure to inhibitors of the protease (1 microM N-ethylmaleimide, 100-300 microM copper chloride, 1 microM MDL28170, or anti-protease antiserum), suggesting that the viral protease activity is required during the cellular entry process [1].
  • Copper loading was accomplished through daily ip injections of aqueous copper chloride at a dosage rate of 8 mg/kg body weight for 1, 2, and 4 weeks [2].
  • This report describes the isolation of a novel gene cluster xmeRSA from Xanthomonas strain IG-8 that mediates copper chloride resistance [3].
  • Performance of a 7-d growth and survival toxicity test protocol using larval topsmelt, Atherinops affinis (Ayres), was evaluated for copper chloride and sodium azide at representative estuarine salinities [4].
  • The administration of copper chloride by bolus injection led to a rapid improvement in anemia and neutropenia [5].
 

High impact information on chlorocopper

  • Incubation of cells with 200 microM zinc acetate before exposure to copper, raised the LD50 for confluent cells to 1,250 microM copper chloride, improved protein synthesis, and increased synthesis of a 10-kD protein, apparently metallothionein [6].
  • Survival and cell growth were reduced in media containing greater than 500 microM copper chloride for 48 h; LD50 was 750 microM [6].
  • The molar copper content is increased to 1.8 after incubation of Cox17p in the presence of a 6-fold molar excess of cuprous chloride under reduced conditions [7].
  • A progressive reduction in the size of rat metallothionein-1 mRNA following induction by copper chloride or dexamethasone was demonstrated on RNA blots, and was shown to be due to shortening of the poly(A)-tail [8].
  • Ferric chloride and copper chloride completely reversed the inhibitory effect of meconium [9].
 

Biological context of chlorocopper

 

Anatomical context of chlorocopper

  • The effect of thiomolybdates and copper on LH differentiation was investigated by supplementing (ammonium) tetrathiomolybdate to optimum theca cell culture media at 0-100 microg/ml, copper (chloride) at equimolar concentrations (0-51.6 microg/ml) or equimolar combinations of both media [15].
  • The addition of copper chloride neither increased the synthesis of non-collagenous proteins by the fibroblasts nor influenced their proliferation rate [16].
  • Repletion of lymphocyte cultures with copper chloride increased proliferative responses to PHA in both +Cu and -Cu calves, and greater responses at all levels of copper (1 to 16 micrograms/mL) were noted in -Cu calves [17].
  • Soluble cuprous chloride complexes are formed in the uterus by slowly entering oxygen [18].
  • Copper chloride stimulated the insulin release by the perfused pancreas of rats fed laboratory chow (copper content, 6.7 ppm) [19].
 

Associations of chlorocopper with other chemical compounds

 

Gene context of chlorocopper

 

Analytical, diagnostic and therapeutic context of chlorocopper

References

  1. The adenovirus protease is required for virus entry into host cells. Cotten, M., Weber, J.M. Virology (1995) [Pubmed]
  2. The role of lysosomes in the pathogenesis of copper-induced hepatotoxicity. II. Intracellular distribution of copper in hepatocytes. Helman, R.G., Adams, L.G., Pierce, K.R., Bridges, C.H., Bailey, E.M. Toxicol. Appl. Pharmacol. (1983) [Pubmed]
  3. An acquired efflux system is responsible for copper resistance in Xanthomonas strain IG-8 isolated from China. Ryan, R.P., Ryan, D.J., Sun, Y.C., Li, F.M., Wang, Y., Dowling, D.N. FEMS Microbiol. Lett. (2007) [Pubmed]
  4. Influence of salinity on copper and azide toxicity to larval topsmelt Atherinops affinis (Ayres). Anderson, B.S., Hunt, J.W., Piekarski, W.J., Phillips, B.M., Englund, M.A., Tjeerdema, R.S., Goetzl, J.D. Arch. Environ. Contam. Toxicol. (1995) [Pubmed]
  5. Anemia and neutropenia in a case of copper deficiency: role of copper in normal hematopoiesis. Hirase, N., Abe, Y., Sadamura, S., Yufu, Y., Muta, K., Umemura, T., Nishimura, J., Nawata, H., Ideguchi, H. Acta Haematol. (1992) [Pubmed]
  6. Hepatocellular copper toxicity and its attenuation by zinc. Schilsky, M.L., Blank, R.R., Czaja, M.J., Zern, M.A., Scheinberg, I.H., Stockert, R.J., Sternlieb, I. J. Clin. Invest. (1989) [Pubmed]
  7. Purification, characterization, and localization of yeast Cox17p, a mitochondrial copper shuttle. Beers, J., Glerum, D.M., Tzagoloff, A. J. Biol. Chem. (1997) [Pubmed]
  8. An analysis of the rate of metallothionein mRNA poly(A)-shortening using RNA blot hybridization. Mercer, J.F., Wake, S.A. Nucleic Acids Res. (1985) [Pubmed]
  9. Reversal of meconium inhibition of pulmonary surfactant by ferric chloride, copper chloride, and acetic acid. Almaas, R., Robertson, B., Linderholm, B., Lundberg, E., Saugstad, O.D., Moen, A. Am. J. Respir. Crit. Care Med. (2000) [Pubmed]
  10. The molecular structure of different species of cuprous chloride from gas-phase electron diffraction and quantum chemical calculations. Hargittai, M., Schwerdtfeger, P., Réffy, B., Brown, R. Chemistry (Weinheim an der Bergstrasse, Germany) (2003) [Pubmed]
  11. Effects of combustion temperature on PCDD/Fs formation in laboratory-scale fluidized-bed incineration. Hatanaka, T., Imagawa, T., Kitajima, A., Takeuchi, M. Environ. Sci. Technol. (2001) [Pubmed]
  12. Determination of the taste threshold of copper in water. Zacarías, I., Yáñez, C.G., Araya, M., Oraka, C., Olivares, M., Uauy, R. Chem. Senses (2001) [Pubmed]
  13. The effect of dietary supplementation with copper sulfate or tribasic copper chloride on broiler performance, relative copper bioavailability, and dietary prooxidant activity. Miles, R.D., O'Keefe, S.F., Henry, P.R., Ammerman, C.B., Luo, X.G. Poult. Sci. (1998) [Pubmed]
  14. Effect of CuCl2, NaCl and EDTA on the enzyme alpha-L-iduronidase in the plasma of normal individuals and heterozygotes for MPS I. Mandelli, J., Wajner, A., Pires, R., Giugliani, R., Coelho, J.C. Clin. Chim. Acta (2002) [Pubmed]
  15. Effect of copper and thiomolybdates on bovine theca cell differentiation in vitro. Kendall, N.R., Marsters, P., Guo, L., Scaramuzzi, R.J., Campbell, B.K. J. Endocrinol. (2006) [Pubmed]
  16. Copper stimulates human oral fibroblasts in vitro: a role in the pathogenesis of oral submucous fibrosis. Trivedy, C., Meghji, S., Warnakulasuriya, K.A., Johnson, N.W., Harris, M. J. Oral Pathol. Med. (2001) [Pubmed]
  17. Effect of copper deficiency on tissue, blood characteristics, and immune function of calves challenged with infectious bovine rhinotracheitis virus and Pasteurella hemolytica. Stabel, J.R., Spears, J.W., Brown, T.T. J. Anim. Sci. (1993) [Pubmed]
  18. Formation of copper oxychloride and reactive oxygen species as causes of uterine injury during copper oxidation of Cu-IUD. Beltran-Garcia, M.J., Espinosa, A., Herrera, N., Perez-Zapata, A.J., Beltran-Garcia, C., Ogura, T. Contraception. (2000) [Pubmed]
  19. Effect of copper on insulin release by the intact rat pancreas and the perfused rat pancreas. Cohen, A.M., Miller, E. Pancreas (1986) [Pubmed]
  20. Role of free radicals in the initiation and promotion of radiation transformation in vitro. Kennedy, A.R., Troll, W., Little, J.B. Carcinogenesis (1984) [Pubmed]
  21. Separation of proteins from stressed rice (Oryza sativa L.) leaf tissues by two-dimensional polyacrylamide gel electrophoresis: induction of pathogenesis-related and cellular protectant proteins by jasmonic acid, UV irradiation and copper chloride. Rakwal, R., Agrawal, G.K., Yonekura, M. Electrophoresis (1999) [Pubmed]
  22. Oxidative susceptibility of unfractionated serum or plasma: response to antioxidants in vitro and to antioxidant supplementation. Atkin, M.A., Gasper, A., Ullegaddi, R., Powers, H.J. Clin. Chem. (2005) [Pubmed]
  23. Anion effect on the nanostructure of a metal ion binding self-assembling Peptide. Yang, H., Pritzker, M., Fung, S.Y., Sheng, Y., Wang, W., Chen, P. Langmuir : the ACS journal of surfaces and colloids. (2006) [Pubmed]
  24. Effects of copper chloride on formation of polychlorinated dibenzofurans in model waste incineration in a laboratory-scale fluidized-bed reactor. Hatanaka, T., Imagawa, T., Takeuchi, M. Chemosphere (2002) [Pubmed]
  25. Increase in oxidation resistance of atherogenic serum lipoproteins following antioxidant supplementation: a randomized double-blind placebo-controlled clinical trial. Nyyssönen, K., Porkkala, E., Salonen, R., Korpela, H., Salonen, J.T. European journal of clinical nutrition. (1994) [Pubmed]
  26. Role of copper chloride on the surface of activated carbon in adsorption of methyl mercaptan. Kim, D.J., Yie, J.E. Journal of colloid and interface science. (2005) [Pubmed]
  27. Preparation of N-(t)Boc l-glutathione dimethyl and di-tert-butyl esters: Versatile synthetic building blocks. Falck, J.R., Sangras, B., Capdevila, J.H. Bioorg. Med. Chem. (2007) [Pubmed]
  28. Oxygenation of indoles by a copper(I) chloride pyridine complex. A new tryptophan 2,3-dioxygenase model system. Balogh-Hergovich, E., Speier, G. J. Inorg. Biochem. (1980) [Pubmed]
  29. Effects of copper source and concentration on in vitro phytate phosphorus hydrolysis by phytase. Pang, Y., Applegate, T.J. J. Agric. Food Chem. (2006) [Pubmed]
  30. Comparison of the local lymph node assay with the guinea-pig maximization test for the detection of a range of contact allergens. Basketter, D.A., Scholes, E.W. Food Chem. Toxicol. (1992) [Pubmed]
  31. The use of waste biomass of Sargassum sp. for the biosorption of copper from simulated semiconductor effluents. Padilha, F.P., de França, F.P., da Costa, A.C. Bioresour. Technol. (2005) [Pubmed]
  32. EPR, magnetic and spectral studies of copper(II) and nickel(II) complexes of schiff base macrocyclic ligand derived from thiosemicarbazide and glyoxal. Chandra, S., Sangeetika, X. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. (2004) [Pubmed]
 
WikiGenes - Universities