The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Phytol     (E,7R,11R)-3,7,11,15- tetramethylhexadec-2...

Synonyms: trans-Phytol, Phytol, E-, CCRIS 8226, CHEMBL1644111, CHEBI:17327, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Phytol

 

High impact information on Phytol

 

Chemical compound and disease context of Phytol

  • The incidence of Am580-induced resorptions, spina bifida aperta, micrognathia, anotia, kidney hypoplasia, dilated bladder, undescended testis, atresia ani, short and absent tail, fused ribs and fetal weight retardation were potentiated by coadministration of phytanic acid or its precursor phytol [8].
  • 4. The purified enzyme hydrolyzed chlorophylls a and b from spinach into chlorophyllides a and b and phytols, respectively; and bacteriochlorophyll a from Rhodospirillum rubrum into bacteriochlorophyllide a and a derivative of phytol, possibly all-trans-geranylgeraniol [9].
 

Biological context of Phytol

  • Thus, Arabidopsis contains a distinct enzymatic machinery for redirecting free phytol released from chlorophyll degradation into chloroplast lipid metabolism [10].
  • During senescence, chlorophyll is hydrolyzed, resulting in the release of free phytol and chlorophyllide [10].
  • These show that phytolated Bchls can assemble in vivo into the photosynthetic apparatus of Rs. rubrum and that the newly introduced phytol tail provokes small perturbations to the Bchls within their binding sites in the LH1 complex [2].
  • A conserved sequence, DXXAXXXGXXXGX(8)KKTXEG, found in several enzymes utilizing CTP as substrate including DKs, phytol kinases, and several CDP-diacylglycerol synthetases has been identified, and the possibility that it is part of the CTP-binding domain of hDKp has been investigated [11].
  • Moreover, both male and female mice exhibited phytol-induced peroxisomal proliferation, as demonstrated by liver morphology and upregulation of the peroxisomal protein catalase [12].
 

Anatomical context of Phytol

 

Associations of Phytol with other chemical compounds

  • In summary, the present work establishes a role for SCP-x in branched chain lipid catabolism and demonstrates a sexual dimorphic response to phytol, a precursor of phytanic acid, in lipid parameters and hepatotoxicity [12].
  • This latter result provides the first genetic confirmation that esterification of bacteriochlorophyllide a initially involves the addition of a geranylgeraniol group followed by sequential reduction of the geranylgeraniol moiety to phytol which is the end product of the pathway [18].
  • In contrast, the Euglenophyte Euglena gracilis synthesized ergosterol, as well as phytol, via the acetate/MVA route [19].
  • The hepatic concentration of phytanic acid, a metabolite of phytol that is the ligand and activator of retinoid X receptors and peroxisome proliferator-activated receptors, was higher in mice fed fish oil than safflower or palm oil, and in those administered safflower oil than palm oil [20].
  • Treatments with MED, DEX, DBP, or PHY did not significantly alter uterine weight or morphology and had no significant effects on uterine hsp levels [21].
 

Gene context of Phytol

 

Analytical, diagnostic and therapeutic context of Phytol

References

  1. The Arabidopsis vitamin E pathway gene5-1 mutant reveals a critical role for phytol kinase in seed tocopherol biosynthesis. Valentin, H.E., Lincoln, K., Moshiri, F., Jensen, P.K., Qi, Q., Venkatesh, T.V., Karunanandaa, B., Baszis, S.R., Norris, S.R., Savidge, B., Gruys, K.J., Last, R.L. Plant Cell (2006) [Pubmed]
  2. A reaction center-light-harvesting 1 complex (RC-LH1) from a Rhodospirillum rubrum mutant with altered esterifying pigments: characterization by optical spectroscopy and cryo-electron microscopy. Qian, P., Addlesee, H.A., Ruban, A.V., Wang, P., Bullough, P.A., Hunter, C.N. J. Biol. Chem. (2003) [Pubmed]
  3. Assay for Sjögren-Larsson syndrome based on a deficiency of phytol degradation. van den Brink, D.M., van Miert, J.M., Wanders, R.J. Clin. Chem. (2005) [Pubmed]
  4. Rhodospirillum rubrum possesses a variant of the bchP gene, encoding geranylgeranyl-bacteriopheophytin reductase. Addlesee, H.A., Hunter, C.N. J. Bacteriol. (2002) [Pubmed]
  5. Isoprenoid biosynthesis in the diatoms Rhizosolenia setigera (Brightwell) and Haslea ostrearia (Simonsen). Massé, G., Belt, S.T., Rowland, S.J., Rohmer, M. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  6. Cloning of chlorophyllase, the key enzyme in chlorophyll degradation: finding of a lipase motif and the induction by methyl jasmonate. Tsuchiya, T., Ohta, H., Okawa, K., Iwamatsu, A., Shimada, H., Masuda, T., Takamiya, K. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  7. A mouse model for alpha-methylacyl-CoA racemase deficiency: adjustment of bile acid synthesis and intolerance to dietary methyl-branched lipids. Savolainen, K., Kotti, T.J., Schmitz, W., Savolainen, T.I., Sormunen, R.T., Ilves, M., Vainio, S.J., Conzelmann, E., Hiltunen, J.K. Hum. Mol. Genet. (2004) [Pubmed]
  8. Potentiation of the teratogenic effects induced by coadministration of retinoic acid or phytanic acid/phytol with synthetic retinoid receptor ligands. Elmazar, M.M., Nau, H. Arch. Toxicol. (2004) [Pubmed]
  9. Purification and properties of chlorophyllase from greened rye seedlings. Tanaka, K., Kakuno, T., Yamashita, J., Horio, T. J. Biochem. (1982) [Pubmed]
  10. A salvage pathway for phytol metabolism in Arabidopsis. Ischebeck, T., Zbierzak, A.M., Kanwischer, M., Dörmann, P. J. Biol. Chem. (2006) [Pubmed]
  11. Human Dolichol Kinase, a Polytopic Endoplasmic Reticulum Membrane Protein with a Cytoplasmically Oriented CTP-binding Site. Shridas, P., Waechter, C.J. J. Biol. Chem. (2006) [Pubmed]
  12. Sexually dimorphic metabolism of branched-chain lipids in C57BL/6J mice. Atshaves, B.P., Payne, H.R., McIntosh, A.L., Tichy, S.E., Russell, D., Kier, A.B., Schroeder, F. J. Lipid Res. (2004) [Pubmed]
  13. Characterization of the final step in the conversion of phytol into phytanic acid. van den Brink, D.M., van Miert, J.N., Dacremont, G., Rontani, J.F., Wanders, R.J. J. Biol. Chem. (2005) [Pubmed]
  14. Tocopherol analogs suppress arachidonic acid metabolism via phospholipase inhibition. Pentland, A.P., Morrison, A.R., Jacobs, S.C., Hruza, L.L., Hebert, J.S., Packer, L. J. Biol. Chem. (1992) [Pubmed]
  15. Phytanic acid is ligand and transcriptional activator of murine liver fatty acid binding protein. Wolfrum, C., Ellinghaus, P., Fobker, M., Seedorf, U., Assmann, G., Börchers, T., Spener, F. J. Lipid Res. (1999) [Pubmed]
  16. Metabolism of phytol to phytanic acid in the mouse, and the role of PPAR{alpha} in its regulation. Gloerich, J., van den Brink, D.M., Ruiter, J.P., van Vlies, N., Vaz, F.M., Wanders, R.J., Ferdinandusse, S. J. Lipid Res. (2007) [Pubmed]
  17. Inhibition of Ca2+-induced cytosolic enzyme efflux from skeletal muscle by vitamin E and related compounds. Phoenix, J., Edwards, R.H., Jackson, M.J. Biochem. J. (1989) [Pubmed]
  18. Molecular genetic analysis of terminal steps in bacteriochlorophyll a biosynthesis: characterization of a Rhodobacter capsulatus strain that synthesizes geranylgeraniol-esterified bacteriochlorophyll a. Bollivar, D.W., Wang, S., Allen, J.P., Bauer, C.E. Biochemistry (1994) [Pubmed]
  19. Distribution of the mevalonate and glyceraldehyde phosphate/pyruvate pathways for isoprenoid biosynthesis in unicellular algae and the cyanobacterium Synechocystis PCC 6714. Disch, A., Schwender, J., Müller, C., Lichtenthaler, H.K., Rohmer, M. Biochem. J. (1998) [Pubmed]
  20. Polyunsaturated fats attenuate the dietary phytol-induced increase in hepatic fatty acid oxidation in mice. Hashimoto, T., Shimizu, N., Kimura, T., Takahashi, Y., Ide, T. J. Nutr. (2006) [Pubmed]
  21. Increases in mouse uterine heat shock protein levels are a sensitive and specific response to uterotrophic agents. Papaconstantinou, A.D., Fisher, B.R., Umbreit, T.H., Brown, K.M. Environ. Health Perspect. (2002) [Pubmed]
  22. A phytol-enriched diet induces changes in fatty acid metabolism in mice both via PPARalpha-dependent and -independent pathways. Gloerich, J., van Vlies, N., Jansen, G.A., Denis, S., Ruiter, J.P., van Werkhoven, M.A., Duran, M., Vaz, F.M., Wanders, R.J., Ferdinandusse, S. J. Lipid Res. (2005) [Pubmed]
  23. Peroxisomal trans-2-enoyl-CoA reductase is involved in phytol degradation. Gloerich, J., Ruiter, J.P., van den Brink, D.M., Ofman, R., Ferdinandusse, S., Wanders, R.J. FEBS Lett. (2006) [Pubmed]
  24. Phytol directly activates peroxisome proliferator-activated receptor alpha (PPARalpha) and regulates gene expression involved in lipid metabolism in PPARalpha-expressing HepG2 hepatocytes. Goto, T., Takahashi, N., Kato, S., Egawa, K., Ebisu, S., Moriyama, T., Fushiki, T., Kawada, T. Biochem. Biophys. Res. Commun. (2005) [Pubmed]
  25. Identification of fatty aldehyde dehydrogenase in the breakdown of phytol to phytanic acid. van den Brink, D.M., van Miert, J.N., Dacremont, G., Rontani, J.F., Jansen, G.A., Wanders, R.J. Mol. Genet. Metab. (2004) [Pubmed]
  26. Are syn-ligated (bacterio)chlorophyll dimers energetic traps in light-harvesting systems? Balaban, T.S. FEBS Lett. (2003) [Pubmed]
  27. Synthesis and analysis of phytyl and phytenoyl wax esters. Gellerman, J.L., Anderson, W.H., Schlenk, H. Lipids (1975) [Pubmed]
  28. Phytol is a novel tumor promoter on ICR mouse skin. Kagoura, M., Matsui, C., Morohashi, M. Jpn. J. Cancer Res. (1999) [Pubmed]
  29. A novel assay for the prenatal diagnosis of Sjögren-Larsson syndrome. van den Brink, D.M., van Miert, J.M., Wanders, R.J. J. Inherit. Metab. Dis. (2005) [Pubmed]
  30. Antimicrobial terpenoids from Pterocarpus indicus. Ragasa, C.Y., De Luna, R.D., Hofilena, J.G. Nat. Prod. Res. (2005) [Pubmed]
 
WikiGenes - Universities