The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

KT2/3  -  potassium channel AKT2/3

Arabidopsis thaliana

Synonyms: AKT2, AKT2/3, AKT3, T10I14.30, T10I14_30, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of AKT2

  • We report here that the inward-rectifying potassium channels KAT1 and AKT2 were functionally expressed in K+ uptake-deficient Escherichia coli [1].
 

High impact information on AKT2

 

Biological context of AKT2

  • To confirm the akt2/3-1 phenotype, two independent knockout mutants, akt2-1 and akt2::En-1 were tested, demonstrating that the loss of AKT2/3 indeed affects the Ca2+ dependence of guard cell inward rectifier [4].
  • All of the data are consistent with the hypothesis that the encoded polypeptide corresponds to the longest open reading frame previously identified (AKT2) [5].
  • The molecular aspects of AKT2 regulation by phosphorylation, and the possible physiological meaning of such regulation in the plant context, are discussed [6].
  • Gating mode 1 AKT2 channels behave as delayed K(+)-selective inward rectifiers; while gating mode 2 AKT2 channels are K(+)-selective 'open leaks' in the physiological range of membrane potential [6].
  • Suppression of inward-rectifying K+ channels KAT1 and AKT2 by dominant negative point mutations in the KAT1 alpha-subunit [7].
 

Anatomical context of AKT2

 

Associations of AKT2 with chemical compounds

  • From our studies we thus conclude that AKT2/3 regulates the sucrose/H(+) symporters via the phloem potential [9].
  • We conclude that the lysine residue K197 sensitizes AKT2 to phosphoregulation [10].
  • Substitution of the lysine by serine or aspartate abolished the "open-lock" characteristic and converted AKT2 into an inward-rectifying channel [10].
  • In leaves and flower stalk, the light-induced transcription of akt2/3 was suppressed by CO2-free air, indicating that gene activity is under the control of photosynthates [11].
 

Physical interactions of AKT2

 

Other interactions of AKT2

  • Three members of the so-called Shaker K+ channel gene family (nine genes identified in Arabidopsis) play a role in these transports: AKT1, SKOR and AKT2 [13].
  • Here we report the isolation of a novel Arabidopsis thaliana cDNA (AKT2) that is highly homologous to the two previously identified K+ channel genes, KAT1 and AKT1 [14].
  • Homo- and heteromeric interactions between Arabidopsis K(+) channels KAT1, AKT1, and AKT2 were identified [15].
  • In addition, we also detected transcripts for AtPP2CA, a protein phosphatase, that interacts with AKT2/3 [16].
 

Analytical, diagnostic and therapeutic context of AKT2

References

  1. Determination of transmembrane topology of an inward-rectifying potassium channel from Arabidopsis thaliana based on functional expression in Escherichia coli. Uozumi, N., Nakamura, T., Schroeder, J.I., Muto, S. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  2. Physical and functional interaction of the Arabidopsis K(+) channel AKT2 and phosphatase AtPP2CA. Chérel, I., Michard, E., Platet, N., Mouline, K., Alcon, C., Sentenac, H., Thibaud, J.B. Plant Cell (2002) [Pubmed]
  3. Outer pore residues control the H(+) and K(+) sensitivity of the Arabidopsis potassium channel AKT3. Geiger, D., Becker, D., Lacombe, B., Hedrich, R. Plant Cell (2002) [Pubmed]
  4. AKT2/3 subunits render guard cell K+ channels Ca2+ sensitive. Ivashikina, N., Deeken, R., Fischer, S., Ache, P., Hedrich, R. J. Gen. Physiol. (2005) [Pubmed]
  5. A shaker-like K(+) channel with weak rectification is expressed in both source and sink phloem tissues of Arabidopsis. Lacombe, B., Pilot, G., Michard, E., Gaymard, F., Sentenac, H., Thibaud, J.B. Plant Cell (2000) [Pubmed]
  6. Inward rectification of the AKT2 channel abolished by voltage-dependent phosphorylation. Michard, E., Dreyer, I., Lacombe, B., Sentenac, H., Thibaud, J.B. Plant J. (2005) [Pubmed]
  7. Suppression of inward-rectifying K+ channels KAT1 and AKT2 by dominant negative point mutations in the KAT1 alpha-subunit. Baizabal-Aguirre, V.M., Clemens, S., Uozumi, N., Schroeder, J.I. J. Membr. Biol. (1999) [Pubmed]
  8. Functions of AKT1 and AKT2 potassium channels determined by studies of single and double mutants of Arabidopsis. Dennison, K.L., Robertson, W.R., Lewis, B.D., Hirsch, R.E., Sussman, M.R., Spalding, E.P. Plant Physiol. (2001) [Pubmed]
  9. Loss of the AKT2/3 potassium channel affects sugar loading into the phloem of Arabidopsis. Deeken, R., Geiger, D., Fromm, J., Koroleva, O., Ache, P., Langenfeld-Heyser, R., Sauer, N., May, S.T., Hedrich, R. Planta (2002) [Pubmed]
  10. A unique voltage sensor sensitizes the potassium channel AKT2 to phosphoregulation. Michard, E., Lacombe, B., Porée, F., Mueller-Roeber, B., Sentenac, H., Thibaud, J.B., Dreyer, I. J. Gen. Physiol. (2005) [Pubmed]
  11. Developmental and light-dependent regulation of a phloem-localised K+ channel of Arabidopsis thaliana. Deeken, R., Sanders, C., Ache, P., Hedrich, R. Plant J. (2000) [Pubmed]
  12. The AKT3 potassium channel protein interacts with the AtPP2CA protein phosphatase 2C. Vranová, E., Tähtiharju, S., Sriprang, R., Willekens, H., Heino, P., Palva, E.T., Inzé, D., Van Camp, W. J. Exp. Bot. (2001) [Pubmed]
  13. Regulated expression of Arabidopsis shaker K+ channel genes involved in K+ uptake and distribution in the plant. Pilot, G., Gaymard, F., Mouline, K., Chérel, I., Sentenac, H. Plant Mol. Biol. (2003) [Pubmed]
  14. Multiple genes, tissue specificity, and expression-dependent modulationcontribute to the functional diversity of potassium channels in Arabidopsis thaliana. Cao, Y., Ward, J.M., Kelly, W.B., Ichida, A.M., Gaber, R.F., Anderson, J.A., Uozumi, N., Schroeder, J.I., Crawford, N.M. Plant Physiol. (1995) [Pubmed]
  15. K+ channel interactions detected by a genetic system optimized for systematic studies of membrane protein interactions. Obrdlik, P., El-Bakkoury, M., Hamacher, T., Cappellaro, C., Vilarino, C., Fleischer, C., Ellerbrok, H., Kamuzinzi, R., Ledent, V., Blaudez, D., Sanders, D., Revuelta, J.L., Boles, E., André, B., Frommer, W.B. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  16. Isolation of AtSUC2 promoter-GFP-marked companion cells for patch-clamp studies and expression profiling. Ivashikina, N., Deeken, R., Ache, P., Kranz, E., Pommerrenig, B., Sauer, N., Hedrich, R. Plant J. (2003) [Pubmed]
  17. AKT3, a phloem-localized K+ channel, is blocked by protons. Marten, I., Hoth, S., Deeken, R., Ache, P., Ketchum, K.A., Hoshi, T., Hedrich, R. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
 
WikiGenes - Universities