The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

FBP1  -  fructose 1,6-bisphosphate 1-phosphatase

Saccharomyces cerevisiae S288c

Synonyms: D-fructose-1,6-bisphosphate 1-phosphohydrolase, FBPase, Fructose-1,6-bisphosphatase, L8039.18, YLR377C
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of FBP1

 

High impact information on FBP1

 

Biological context of FBP1

 

Anatomical context of FBP1

 

Associations of FBP1 with chemical compounds

  • Glucose strongly represses the transcription of the gluconeogenic genes, FBP1 and PCK1, and accelerates the degradation of their mRNAs [12].
  • The transcription of the yeast FBP1 and PCK1 genes, which encode the gluconeogenic enzymes fructose-1,6-bisphosphatase and phosphoenolpyruvate carboxykinase, is repressed by glucose [13].
  • Interestingly, deletion of FBP1 led to reduced sensitivity to MMS, but not to other DNA-damaging agents, such as 4-NQO or phleomycin [7].
  • The cyclosporin A binding pocket is important for Cpr1p function, since cyclosporin A binding-deficient mutants failed to complement FBPase import in Deltacpr1 and Deltavid22 mutants [8].
  • Fructose bisphosphatase activity was not greatly overproduced when the FBP1 gene was present on a multicopy vector in yeast [14].
 

Physical interactions of FBP1

  • Regions in the promoter of the yeast FBP1 gene implicated in catabolite repression may bind the product of the regulatory gene MIG1 [15].
  • Two of the ORFs code for the well-characterized genes SEC61 (which codes for the core subunit of the ER translocation complex) and FBP1 (encoding fructose-1,6-bisphosphatase) [16].
  • A multiubiquitin chain containing isopeptide linkages at Lys48 of ubiquitin is attached to FBPase [9].
  • Indeed, initiation of Gal2p and FBPase proteolysis appears to require rapid transport of those substrates of the Hxt transporters that are at least partially metabolized by hexokinase Hxk2p [17].
 

Enzymatic interactions of FBP1

 

Regulatory relationships of FBP1

  • Neither deletion nor overexpression of the MIG1 gene affected the regulated expression of the FBP1 or PCK1 genes [6].
  • A gene cassette was constructed for fructose-1,6-bisphosphatase from S. cerevisiae and the gene cassette expressed from the regulated PHO5 and GAL1 promoters of yeast [19].
  • The S. cerevisiae and human SGT1 genes both suppress git7-93 but not git7-235 for glucose repression of fbp1 transcription and benomyl sensitivity [20].
  • Furthermore, FBPase import was inhibited when cells overexpressed the K48R/K63R ubiquitin mutant that fails to form multiubiquitin chains [21].
  • Otherwise, growth of such strains is indistinguishable from that of RAS2(+) strains. ras2(318S) strains also exhibit a delay in glucose-stimulated phosphorylation and turnover of fructose-1,6-bisphosphatase, a substrate of the cAMP-dependent protein kinase A (PKA) and a key component of the gluconeogenic branch of the glycolytic pathway [22].
 

Other interactions of FBP1

 

Analytical, diagnostic and therapeutic context of FBP1

References

  1. A natural A/T-rich sequence from the yeast FBP1 gene exists as a cruciform in Escherichia coli cells. del Olmo, M., Pérez-Ortín, J.E. Plasmid (1993) [Pubmed]
  2. Regulated import and degradation of a cytosolic protein in the yeast vacuole. Chiang, H.L., Schekman, R. Nature (1991) [Pubmed]
  3. Ubc8p functions in catabolite degradation of fructose-1, 6-bisphosphatase in yeast. Schüle, T., Rose, M., Entian, K.D., Thumm, M., Wolf, D.H. EMBO J. (2000) [Pubmed]
  4. The heat shock protein Ssa2p is required for import of fructose-1, 6-bisphosphatase into Vid vesicles. Brown, C.R., McCann, J.A., Chiang, H.L. J. Cell Biol. (2000) [Pubmed]
  5. CAT8, a new zinc cluster-encoding gene necessary for derepression of gluconeogenic enzymes in the yeast Saccharomyces cerevisiae. Hedges, D., Proft, M., Entian, K.D. Mol. Cell. Biol. (1995) [Pubmed]
  6. Regulatory regions in the yeast FBP1 and PCK1 genes. Mercado, J.J., Gancedo, J.M. FEBS Lett. (1992) [Pubmed]
  7. Fructose-1,6-bisphosphatase mediates cellular responses to DNA damage and aging in Saccharomyces cerevisiae. Kitanovic, A., Wölfl, S. Mutat. Res. (2006) [Pubmed]
  8. Cyclophilin A mediates Vid22p function in the import of fructose-1,6-bisphosphatase into Vid vesicles. Brown, C.R., Cui, D.Y., Hung, G.G., Chiang, H.L. J. Biol. Chem. (2001) [Pubmed]
  9. Catabolite inactivation of fructose-1,6-bisphosphatase of Saccharomyces cerevisiae. Degradation occurs via the ubiquitin pathway. Schork, S.M., Thumm, M., Wolf, D.H. J. Biol. Chem. (1995) [Pubmed]
  10. Vid22p, a novel plasma membrane protein, is required for the fructose-1,6-bisphosphatase degradation pathway. Brown, C.R., McCann, J.A., Hung, G.G., Elco, C.P., Chiang, H.L. J. Cell. Sci. (2002) [Pubmed]
  11. Sensitivity of fructose-1,6-biphosphatase from yeast, liver and skeletal muscle to fructose-2,6-biphosphate and 5'-adenosine monophosphate. von Herrath, M., Holzer, H. Zeitschrift für Lebensmittel-Untersuchung und -Forschung. (1988) [Pubmed]
  12. Differential post-transcriptional regulation of yeast mRNAs in response to high and low glucose concentrations. Yin, Z., Hatton, L., Brown, A.J. Mol. Microbiol. (2000) [Pubmed]
  13. Multiple signalling pathways trigger the exquisite sensitivity of yeast gluconeogenic mRNAs to glucose. Yin, Z., Smith, R.J., Brown, A.J. Mol. Microbiol. (1996) [Pubmed]
  14. Fructose bisphosphatase of Saccharomyces cerevisiae. Cloning, disruption and regulation of the FBP1 structural gene. Sedivy, J.M., Fraenkel, D.G. J. Mol. Biol. (1985) [Pubmed]
  15. Regions in the promoter of the yeast FBP1 gene implicated in catabolite repression may bind the product of the regulatory gene MIG1. Mercado, J.J., Vincent, O., Gancedo, J.M. FEBS Lett. (1991) [Pubmed]
  16. The sequence of a 15 769 bp segment of Pichia anomala identifies the SEC61 and FBP1 genes and five new open reading frames. Ruíz, T., Sánchez, M., De la Rosa, J.M., Rodríguez, L., Domínguez, A. Yeast (2001) [Pubmed]
  17. Two distinct proteolytic systems responsible for glucose-induced degradation of fructose-1,6-bisphosphatase and the Gal2p transporter in the yeast Saccharomyces cerevisiae share the same protein components of the glucose signaling pathway. Horak, J., Regelmann, J., Wolf, D.H. J. Biol. Chem. (2002) [Pubmed]
  18. Substrate specificity of the phosphorylated fructose-1,6-bisphosphatase dephosphorylating protein phosphatase from Saccharomyces cerevisiae. Manhart, A., Holzer, H. Yeast (1988) [Pubmed]
  19. Characterization of the gene for fructose-1,6-bisphosphatase from Saccharomyces cerevisiae and Schizosaccharomyces pombe. Sequence, protein homology, and expression during growth on glucose. Rogers, D.T., Hiller, E., Mitsock, L., Orr, E. J. Biol. Chem. (1988) [Pubmed]
  20. Schizosaccharomyces pombe Git7p, a member of the Saccharomyces cerevisiae Sgtlp family, is required for glucose and cyclic AMP signaling, cell wall integrity, and septation. Schadick, K., Fourcade, H.M., Boumenot, P., Seitz, J.J., Morrell, J.L., Chang, L., Gould, K.L., Partridge, J.F., Allshire, R.C., Kitagawa, K., Hieter, P., Hoffman, C.S. Eukaryotic Cell (2002) [Pubmed]
  21. Biochemical analysis of fructose-1,6-bisphosphatase import into vacuole import and degradation vesicles reveals a role for UBC1 in vesicle biogenesis. Shieh, H.L., Chen, Y., Brown, C.R., Chiang, H.L. J. Biol. Chem. (2001) [Pubmed]
  22. Efficient transition to growth on fermentable carbon sources in Saccharomyces cerevisiae requires signaling through the Ras pathway. Jiang, Y., Davis, C., Broach, J.R. EMBO J. (1998) [Pubmed]
  23. Glucose derepression of gluconeogenic enzymes in Saccharomyces cerevisiae correlates with phosphorylation of the gene activator Cat8p. Randez-Gil, F., Bojunga, N., Proft, M., Entian, K.D. Mol. Cell. Biol. (1997) [Pubmed]
  24. A regulatory factor, Fil1p, involved in derepression of the isocitrate lyase gene in Saccharomyces cerevisiae--a possible mitochondrial protein necessary for protein synthesis in mitochondria. Kanai, T., Takeshita, S., Atomi, H., Umemura, K., Ueda, M., Tanaka, A. Eur. J. Biochem. (1998) [Pubmed]
  25. Fructose-1,6-bisphosphatase of the yeast Kluyveromyces lactis. Zaror, I., Marcus, F., Moyer, D.L., Tung, J., Shuster, J.R. Eur. J. Biochem. (1993) [Pubmed]
  26. Proteins of newly isolated mutants and the amino-terminal proline are essential for ubiquitin-proteasome-catalyzed catabolite degradation of fructose-1,6-bisphosphatase of Saccharomyces cerevisiae. Hämmerle, M., Bauer, J., Rose, M., Szallies, A., Thumm, M., Düsterhus, S., Mecke, D., Entian, K.D., Wolf, D.H. J. Biol. Chem. (1998) [Pubmed]
  27. In vitro reconstitution of glucose-induced targeting of fructose-1, 6-bisphosphatase into the vacuole in semi-intact yeast cells. Shieh, H.L., Chiang, H.L. J. Biol. Chem. (1998) [Pubmed]
  28. Overexpression of catalytically active yeast (Saccharomyces cerevisiae) fructose-1,6-bisphosphatase in Escherichia coli. Bigl, M., Eschrich, K. Biol. Chem. Hoppe-Seyler (1994) [Pubmed]
 
WikiGenes - Universities