The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Kluyveromyces


High impact information on Kluyveromyces


Chemical compound and disease context of Kluyveromyces


Biological context of Kluyveromyces


Anatomical context of Kluyveromyces


Associations of Kluyveromyces with chemical compounds


Gene context of Kluyveromyces

  • To explore the role of STE12 in the pheromone induction of alpha-specific genes, we cloned STE12 and MAT alpha 1 homologs from the related yeast Kluyveromyces lactis [27].
  • Characterization of a positive regulatory gene, LAC9, that controls induction of the lactose-galactose regulon of Kluyveromyces lactis: structural and functional relationships to GAL4 of Saccharomyces cerevisiae [28].
  • We have analyzed a GAL1 mutant (gal1-r strain) of the yeast Kluyveromyces lactis which lacks the induction of beta-galactosidase and the enzymes of the Leloir pathway in the presence of galactose [29].
  • In this study, we show that the HXT11 product, which allows glucose uptake in a glucose permease mutant (rag1) strain of Kluyveromyces lactis, is also involved in the pleiotropic drug resistance process [30].
  • HAP4, the glucose-repressed regulated subunit of the HAP transcriptional complex involved in the fermentation-respiration shift, has a functional homologue in the respiratory yeast Kluyveromyces lactis [31].

Analytical, diagnostic and therapeutic context of Kluyveromyces


  1. Analysis of a eukaryotic beta-galactosidase gene: the N-terminal end of the yeast Kluyveromyces lactis protein shows homology to the Escherichia coli lacZ gene product. Breunig, K.D., Dahlems, U., Das, S., Hollenberg, C.P. Nucleic Acids Res. (1984) [Pubmed]
  2. Kluyveromyces lactis cytoplasmic plasmid pGKL2: heterologous expression of Orf3p and proof of guanylyltransferase and mRNA-triphosphatase activities. Tiggemann, M., Jeske, S., Larsen, M., Meinhardt, F. Yeast (2001) [Pubmed]
  3. Characterization of an AP-1-like transcription factor that mediates an oxidative stress response in Kluyveromyces lactis. Billard, P., Dumond, H., Bolotin-Fukuhara, M. Mol. Gen. Genet. (1997) [Pubmed]
  4. Evaluation of a recombinant Klebsiella oxytoca strain for ethanol production from cellulose by simultaneous saccharification and fermentation: comparison with native cellobiose-utilising yeast strains and performance in co-culture with thermotolerant yeast and Zymomonas mobilis. Golias, H., Dumsday, G.J., Stanley, G.A., Pamment, N.B. J. Biotechnol. (2002) [Pubmed]
  5. Comparison of secretion of a hepatitis C virus glycoprotein in Saccharomyces cerevisiae and Kluyveromyces lactis. Mustilli, A.C., Izzo, E., Houghton, M., Galeotti, C.L. Res. Microbiol. (1999) [Pubmed]
  6. Structural basis for the regulation of splicing of a yeast messenger RNA. Eng, F.J., Warner, J.R. Cell (1991) [Pubmed]
  7. Molecular cloning and expression in E. coli of a yeast gene coding for beta-galactosidase. Dickson, R.C., Markin, J.S. Cell (1978) [Pubmed]
  8. Kluyveromyces lactis killer toxin inhibits adenylate cyclase of sensitive yeast cells. Sugisaki, Y., Gunge, N., Sakaguchi, K., Yamasaki, M., Tamura, G. Nature (1983) [Pubmed]
  9. Homotypic and heterotypic protein associations control Rad51 function in double-strand break repair. Donovan, J.W., Milne, G.T., Weaver, D.T. Genes Dev. (1994) [Pubmed]
  10. Conserved functional domains of the RNA polymerase III general transcription factor BRF. Khoo, B., Brophy, B., Jackson, S.P. Genes Dev. (1994) [Pubmed]
  11. Cloning and expression of the structural gene for beta-glucosidase of Kluyveromyces fragilis in Escherichia coli and Saccharomyces cerevisiae. Raynal, A., Guerineau, M. Mol. Gen. Genet. (1984) [Pubmed]
  12. Abrupt disruption of capping and a single source for recombinationally elongated telomeres in Kluyveromyces lactis. Topcu, Z., Nickles, K., Davis, C., McEachern, M.J. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  13. Are all DNA binding and transcription regulation by an activator physiologically relevant? Li, Q., Johnston, S.A. Mol. Cell. Biol. (2001) [Pubmed]
  14. Cysteine residues in the zinc finger and amino acids adjacent to the finger are necessary for DNA binding by the LAC9 regulatory protein of Kluyveromyces lactis. Witte, M.M., Dickson, R.C. Mol. Cell. Biol. (1988) [Pubmed]
  15. An essential histidine residue for the activity of UDPglucose 4-epimerase from Kluyveromyces fragilis. Mukherji, S., Bhaduri, A. J. Biol. Chem. (1992) [Pubmed]
  16. The Golgi Ca2+-ATPase KlPmr1p function is required for oxidative stress response by controlling the expression of the heat-shock element HSP60 in Kluyveromyces lactis. Uccelletti, D., Farina, F., Pinton, P., Goffrini, P., Mancini, P., Talora, C., Rizzuto, R., Palleschi, C. Mol. Biol. Cell (2005) [Pubmed]
  17. Proton-motive force-driven D-galactose transport in plasma membrane vesicles from the yeast Kluyveromyces marxianus. Van Leeuwen, C.C., Postma, E., Van den Broek, P.J., Van Steveninck, J. J. Biol. Chem. (1991) [Pubmed]
  18. Transformation of Kluyveromyces lactis with the kanamycin (G418) resistance gene of Tn903. Sreekrishna, K., Webster, T.D., Dickson, R.C. Gene (1984) [Pubmed]
  19. Two mechanisms for oxidation of cytosolic NADPH by Kluyveromyces lactis mitochondria. Overkamp, K.M., Bakker, B.M., Steensma, H.Y., van Dijken, J.P., Pronk, J.T. Yeast (2002) [Pubmed]
  20. Flocculation of Saccharomyces cerevisiae is induced by transformation with the GAP1 gene from Kluyveromyces marxianus. Moreira, R.F., Ferreira-Da-Silva, F., Fernandes, P.A., Moradas-Ferreira, P. Yeast (2000) [Pubmed]
  21. Inactivation of the KIPMR1 gene of Kluyveromyces lactis results in defective cell-wall morphogenesis. Uccelletti, D., Mancini, P., Farina, F., Morrone, S., Palleschi, C. Microbiology (Reading, Engl.) (1999) [Pubmed]
  22. Genetics and molecular biology of chitin synthesis in fungi. Bulawa, C.E. Annu. Rev. Microbiol. (1993) [Pubmed]
  23. Molecular cloning of the Golgi apparatus uridine diphosphate-N-acetylglucosamine transporter from Kluyveromyces lactis. Abeijon, C., Robbins, P.W., Hirschberg, C.B. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  24. Mammalian Golgi apparatus UDP-N-acetylglucosamine transporter: molecular cloning by phenotypic correction of a yeast mutant. Guillen, E., Abeijon, C., Hirschberg, C.B. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  25. The hexokinase gene is required for transcriptional regulation of the glucose transporter gene RAG1 in Kluyveromyces lactis. Prior, C., Mamessier, P., Fukuhara, H., Chen, X.J., Wesolowski-Louvel, M. Mol. Cell. Biol. (1993) [Pubmed]
  26. sir2 mutants of Kluyveromyces lactis are hypersensitive to DNA-targeting drugs. Chen, X.J., Clark-Walker, G.D. Mol. Cell. Biol. (1994) [Pubmed]
  27. Coupling of cell identity to signal response in yeast: interaction between the alpha 1 and STE12 proteins. Yuan, Y.O., Stroke, I.L., Fields, S. Genes Dev. (1993) [Pubmed]
  28. Characterization of a positive regulatory gene, LAC9, that controls induction of the lactose-galactose regulon of Kluyveromyces lactis: structural and functional relationships to GAL4 of Saccharomyces cerevisiae. Wray, L.V., Witte, M.M., Dickson, R.C., Riley, M.I. Mol. Cell. Biol. (1987) [Pubmed]
  29. Galactokinase encoded by GAL1 is a bifunctional protein required for induction of the GAL genes in Kluyveromyces lactis and is able to suppress the gal3 phenotype in Saccharomyces cerevisiae. Meyer, J., Walker-Jonah, A., Hollenberg, C.P. Mol. Cell. Biol. (1991) [Pubmed]
  30. Multiple-drug-resistance phenomenon in the yeast Saccharomyces cerevisiae: involvement of two hexose transporters. Nourani, A., Wesolowski-Louvel, M., Delaveau, T., Jacq, C., Delahodde, A. Mol. Cell. Biol. (1997) [Pubmed]
  31. HAP4, the glucose-repressed regulated subunit of the HAP transcriptional complex involved in the fermentation-respiration shift, has a functional homologue in the respiratory yeast Kluyveromyces lactis. Bourgarel, D., Nguyen, C.C., Bolotin-Fukuhara, M. Mol. Microbiol. (1999) [Pubmed]
  32. Molecular cloning of the plasma membrane H(+)-ATPase from Kluyveromyces lactis: a single nucleotide substitution in the gene confers ethidium bromide resistance and deficiency in K+ uptake. Miranda, M., Ramírez, J., Peña, A., Coria, R. J. Bacteriol. (1995) [Pubmed]
  33. Synthesis of galacto-oligosaccharide from lactose using beta-galactosidase from Kluyveromyces lactis: Studies on batch and continuous UF membrane-fitted bioreactors. Chockchaisawasdee, S., Athanasopoulos, V.I., Niranjan, K., Rastall, R.A. Biotechnol. Bioeng. (2005) [Pubmed]
  34. Kinetic properties of native and mutagenized isoforms of mitochondrial alcohol dehydrogenase III purified from Kluyveromyces lactis. Brisdelli, F., Saliola, M., Pascarella, S., Luzi, C., Franceschini, N., Falcone, C., Martini, F., Bozzi, A. Biochimie (2004) [Pubmed]
  35. Cloning of Candida albicans SEC14 gene homologue coding for a putative essential function. Monteoliva, L., Sánchez, M., Pla, J., Gil, C., Nombela, C. Yeast (1996) [Pubmed]
  36. Trehalose-mediated protection of the plasma membrane H+-ATPase from Kluyveromyces lactis during freeze-drying and rehydration. Sampedro, J.G., Guerra, G., Pardo, J.P., Uribe, S. Cryobiology (1998) [Pubmed]
WikiGenes - Universities