The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

MOD5  -  Mod5p

Saccharomyces cerevisiae S288c

Synonyms: DMATase, IPP transferase, IPPT, IPTase, YOR274W, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of MOD5

  • That MOD5 sequences are expressed in Escherichia coli and can complement an N6-(delta 2-isopentenyl)-2-methylthioadenosine-deficient E. coli mutant leads us to conclude that MOD5 is the structural gene for delta 2-isopentenyl pyrophosphate:tRNA isopentenyl transferase [1].
  • Identification and functional characterization of the candidate tumor suppressor gene TRIT1 in human lung cancer [2].
  • The tRNA isopentenyltransferase from maize root tips and kernels catalyzes the incorporation of 2-isopentenyl groups into (Ap)3-7A, endogenous bulk oligonucleotos from maize root tips and kernels, and into poly(A), RNA from MS-2 phages and, to a very low extent, into adenosine [3].
 

High impact information on MOD5

  • Thus, Erg20p appears to affect nonsense suppression by competing with Mod5p for substrate [4].
  • The Saccharomyces cerevisiae Mod5 protein catalyzes isopentenylation of A to i(6)A on tRNAs in the nucleus, cytosol, and mitochondria [4].
  • Changing the distribution of Mod5p so that less Mod5p is present in the cytosol decreases i(6)A on cytosolic tRNAs and alters tRNA-mediated nonsense suppression [4].
  • The substrate for Mod5p, dimethylallyl pyrophosphate, is also a substrate for Erg20p that catalyzes an essential step in sterol biosynthesis [4].
  • Extending the 5' ends of the MOD5 mRNA to include leader sequences of the ADH1 (alcohol dehydrogenase defective) transcript produces significant changes in the choice of AUGs [5].
 

Biological context of MOD5

  • DNA sequence analysis of MOD5 reveals an open reading frame of 428 amino acids [6].
  • DNA sequence and transcript mapping of MOD5: features of the 5' region which suggest two translational starts [6].
  • By this assay, Mod5p may contain more than one region that functions as cytoplasmic retention and/or nuclear export sequences [7].
  • The mdp1 mutants were previously found to change the mitochondrial/cytosolic distribution of Mod5p-I, the tRNA modifying enzyme, and to affect fluid phase endocytosis [8].
  • Expression in S. cerevisiae showed that the gene can complement the anti-suppressor phenotype of a mutant that lacks MOD5, the intrinsic tRNA isopentenyltransferase gene [9].
 

Anatomical context of MOD5

  • Two inframe ATGs of the MOD5 gene are used for initiation of translation, and the form of the protein translated from the first AUG is imported into mitochondria [5].
  • Mutations altering the mitochondrial-cytoplasmic distribution of Mod5p implicate the actin cytoskeleton and mRNA 3' ends and/or protein synthesis in mitochondrial delivery [10].
 

Associations of MOD5 with chemical compounds

 

Other interactions of MOD5

  • maf1 mutation alters the subcellular localization of the Mod5 protein in yeast [13].
  • In these studies, we fused MOD5 sequences encoding N-terminal regions to genes encoding passenger proteins, pseudomature COXIV and dihydrofolate reductase, and studied the ability of these chimeric proteins to be imported into mitochondria both in vivo and in vitro [14].
 

Analytical, diagnostic and therapeutic context of MOD5

References

  1. Isolation and characterization of MOD5, a gene required for isopentenylation of cytoplasmic and mitochondrial tRNAs of Saccharomyces cerevisiae. Dihanich, M.E., Najarian, D., Clark, R., Gillman, E.C., Martin, N.C., Hopper, A.K. Mol. Cell. Biol. (1987) [Pubmed]
  2. Identification and functional characterization of the candidate tumor suppressor gene TRIT1 in human lung cancer. Spinola, M., Galvan, A., Pignatiello, C., Conti, B., Pastorino, U., Nicander, B., Paroni, R., Dragani, T.A. Oncogene (2005) [Pubmed]
  3. tRNA isopentenyltransferase from Zea mays L. Characterization of the isopentenylation reaction of tRNA, oligo (A) and other nucleic acids. Holtz, J., Klämbt, D. Hoppe-Seyler's Z. Physiol. Chem. (1978) [Pubmed]
  4. Competition between a sterol biosynthetic enzyme and tRNA modification in addition to changes in the protein synthesis machinery causes altered nonsense suppression. Benko, A.L., Vaduva, G., Martin, N.C., Hopper, A.K. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  5. mRNA leader length and initiation codon context determine alternative AUG selection for the yeast gene MOD5. Slusher, L.B., Gillman, E.C., Martin, N.C., Hopper, A.K. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  6. DNA sequence and transcript mapping of MOD5: features of the 5' region which suggest two translational starts. Najarian, D., Dihanich, M.E., Martin, N.C., Hopper, A.K. Mol. Cell. Biol. (1987) [Pubmed]
  7. Saccharomyces cerevisiae Mod5p-II contains sequences antagonistic for nuclear and cytosolic locations. Tolerico, L.H., Benko, A.L., Aris, J.P., Stanford, D.R., Martin, N.C., Hopper, A.K. Genetics (1999) [Pubmed]
  8. The growth of mdp1/rsp5 mutants of Saccharomyces cerevisiae is affected by mutations in the ATP-binding domain of the plasma membrane H+ -ATPase. Kamińska, J., Tobiasz, A., Gniewosz, M., Zoładek, T. Gene (2000) [Pubmed]
  9. Identification of a tRNA isopentenyltransferase gene from Arabidopsis thaliana. Golovko, A., Sitbon, F., Tillberg, E., Nicander, B. Plant Mol. Biol. (2002) [Pubmed]
  10. Mutations altering the mitochondrial-cytoplasmic distribution of Mod5p implicate the actin cytoskeleton and mRNA 3' ends and/or protein synthesis in mitochondrial delivery. Zoladek, T., Vaduva, G., Hunter, L.A., Boguta, M., Go, B.D., Martin, N.C., Hopper, A.K. Mol. Cell. Biol. (1995) [Pubmed]
  11. MOD5 translation initiation sites determine N6-isopentenyladenosine modification of mitochondrial and cytoplasmic tRNA. Gillman, E.C., Slusher, L.B., Martin, N.C., Hopper, A.K. Mol. Cell. Biol. (1991) [Pubmed]
  12. How single genes provide tRNA processing enzymes to mitochondria, nuclei and the cytosol. Martin, N.C., Hopper, A.K. Biochimie (1994) [Pubmed]
  13. maf1 mutation alters the subcellular localization of the Mod5 protein in yeast. Murawski, M., Szcześniak, B., Zoładek, T., Hopper, A.K., Martin, N.C., Boguta, M. Acta Biochim. Pol. (1994) [Pubmed]
  14. Subcellular locations of MOD5 proteins: mapping of sequences sufficient for targeting to mitochondria and demonstration that mitochondrial and nuclear isoforms commingle in the cytosol. Boguta, M., Hunter, L.A., Shen, W.C., Gillman, E.C., Martin, N.C., Hopper, A.K. Mol. Cell. Biol. (1994) [Pubmed]
  15. Mutation of the miaA gene of Agrobacterium tumefaciens results in reduced vir gene expression. Gray, J., Wang, J., Gelvin, S.B. J. Bacteriol. (1992) [Pubmed]
 
WikiGenes - Universities