The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Aortic Diseases

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Aortic Diseases

 

High impact information on Aortic Diseases

 

Chemical compound and disease context of Aortic Diseases

  • The magnitude of this systemic response is unlikely to alter the nature or distribution of cholesterol-induced atherosclerosis but may have an important influence on the development of aortic disease produced by prolonged feeding of high-fat, cholesterol-free diets [7].
  • Differential expression of prostaglandin E2 and interleukin-6 in occlusive and aneurysmal aortic disease [8].
  • The study on the whole depicted the ability of Se to inhibit the onset of progression of aortic disease and hence has relevance to its therapeutic potential [9].
  • Further studies are needed to confirm the role of Hcy in aortic disease and the usefulness of including Hcy determination in the clinical evaluation of these patients [10].
  • Twenty-six patients were treated by surgical procedure for aortic diseases with use of Gelatin Resorcin Formalin (GRF) glue [11].
 

Anatomical context of Aortic Diseases

 

Gene context of Aortic Diseases

References

  1. The effect of tumor necrosis factor binding protein and interleukin-1 receptor antagonist on the development of abdominal aortic aneurysms in a rat model. Hingorani, A., Ascher, E., Scheinman, M., Yorkovich, W., DePippo, P., Ladoulis, C.T., Salles-Cunha, S. J. Vasc. Surg. (1998) [Pubmed]
  2. Pharmacologic stress imaging. Beller, G.A. JAMA (1991) [Pubmed]
  3. Thoracic aorta: comparison of gadolinium-enhanced three-dimensional MR angiography with conventional MR imaging. Krinsky, G.A., Rofsky, N.M., DeCorato, D.R., Weinreb, J.C., Earls, J.P., Flyer, M.A., Galloway, A.C., Colvin, S.B. Radiology. (1997) [Pubmed]
  4. An angiotensin-converting enzyme inhibitor, not an angiotensin II type-1 receptor blocker, prevents beta-aminopropionitrile monofumarate-induced aortic dissection in rats. Nagashima, H., Uto, K., Sakomura, Y., Aoka, Y., Sakuta, A., Aomi, S., Hagiwara, N., Kawana, M., Kasanuki, H. J. Vasc. Surg. (2002) [Pubmed]
  5. Abnormal expression of plasminogen activators in aortic aneurysmal and occlusive disease. Reilly, J.M., Sicard, G.A., Lucore, C.L. J. Vasc. Surg. (1994) [Pubmed]
  6. Increased ICAM-1 expression in aortic disease. Davis, C.A., Pearce, W.H., Haines, G.K., Shah, M., Koch, A.E. J. Vasc. Surg. (1993) [Pubmed]
  7. Immune tolerance and atherosclerosis in rabbits. Effect of high-fat and cholesterol-supplemented diets. Gallagher, P.J., Goulding, N.J., Pathirana, C., Gibney, M.J., Jones, D.B., Taylor, T.G. Atherosclerosis (1982) [Pubmed]
  8. Differential expression of prostaglandin E2 and interleukin-6 in occlusive and aneurysmal aortic disease. Reilly, J.M., Miralles, M., Wester, W.N., Sicard, G.A. Surgery (1999) [Pubmed]
  9. Ultrastructural examination of rabbit aortic wall following high-fat diet feeding and selenium supplementation: a transmission electron microscopy study. Mehta, U., Kang, B.P., Kukreja, R.S., Bansal, M.P. Journal of applied toxicology : JAT. (2002) [Pubmed]
  10. Role of hyperhomocysteinemia in aortic disease. Giusti, B., Marcucci, R., Lapini, I., Sestini, I., Lenti, M., Yacoub, M., Pepe, G. Cell. Mol. Biol. (Noisy-le-grand) (2004) [Pubmed]
  11. The efficacy and mid-term results with use of gelatin resorcin formalin (GRF) glue for aortic surgery. Hata, M., Shiono, M., Orime, Y., Yagi, S., Yamamoto, T., Okumura, H., Kimura, S., Kashiwazaki, S., Choh, S., Negishi, N., Sezai, Y. Annals of thoracic and cardiovascular surgery : official journal of the Association of Thoracic and Cardiovascular Surgeons of Asia. (1999) [Pubmed]
  12. Characterization of human aortic elastase found in patients with abdominal aortic aneurysms. Cohen, J.R., Mandell, C., Wise, L. Surgery, gynecology & obstetrics. (1987) [Pubmed]
  13. Matrix metalloproteinases in ascending aortic aneurysms: bicuspid versus trileaflet aortic valves. LeMaire, S.A., Wang, X., Wilks, J.A., Carter, S.A., Wen, S., Won, T., Leonardelli, D., Anand, G., Conklin, L.D., Wang, X.L., Thompson, R.W., Coselli, J.S. J. Surg. Res. (2005) [Pubmed]
  14. Elastin metabolism of the infrarenal aorta. Cohen, J.R., Mandell, C., Chang, J.B., Wise, L. J. Vasc. Surg. (1988) [Pubmed]
  15. Plasma endothelin in patients with acute aortic disease. Wagner, A., Domanovits, H., Holzer, M., Kofler, J., Röggla, M., Müllner, M., Oschatz, E., Prager, M., Grimm, M., Sterz, F., Laggner, A.N. Resuscitation. (2002) [Pubmed]
  16. Propensity score analysis of a six-year experience with minimally invasive isolated aortic valve replacement. Sharony, R., Grossi, E.A., Saunders, P.C., Schwartz, C.F., Ribakove, G.H., Baumann, F.G., Galloway, A.C., Colvin, S.B. The Journal of heart valve disease. (2004) [Pubmed]
 
WikiGenes - Universities