The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Papaver

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

High impact information on Papaver

 

Biological context of Papaver

  • Transformation of opium poppy (Papaver somniferum L.) with antisense berberine bridge enzyme gene (anti-bbe) via somatic embryogenesis results in an altered ratio of alkaloids in latex but not in roots [5].
  • Furthermore, changes in morphology correlated to cell viability and enzyme release in those cultures treated with papaver, 4'-OH and 6-OH papaverine [6].
  • Duration of cell cycle, onset of S phase and induced mitotic synchronisation in seeds of opium poppy, Papaver somniferum L [7].
 

Anatomical context of Papaver

 

Associations of Papaver with chemical compounds

  • In Papaver somniferum (opium poppy) and related species, (S)-reticuline serves as a branch-point intermediate in the biosynthesis of numerous isoquinoline alkaloids [9].
  • S-Adenosyl-L-methionine:(R,S)-reticuline 7-O-methyltransferase converts reticuline to laudanine in tetrahydrobenzylisoquinoline biosynthesis in the opium poppy Papaver somniferum [10].
  • Three key benzylisoquinoline alkaloid biosynthetic enzymes, (S)-N-methylcoclaurine-3'-hydroxylase (CYP80B1), berberine bridge enzyme (BBE), and codeinone reductase (COR), were localized in cultured opium poppy (Papaver somniferum) cells by sucrose density gradient fractionation and immunogold labeling [11].
  • Here we show that a vector based on TRV sequences is effective at silencing the endogenous phytoene desaturase (PapsPDS) gene in Papaver somniferum (opium poppy) [12].
  • Molecular cloning and functional expression of codeinone reductase: the penultimate enzyme in morphine biosynthesis in the opium poppy Papaver somniferum [13].
 

Gene context of Papaver

  • Two highly homologous phospholipase D isoenzymes from Papaver somniferum L. with different transphosphatidylation potential [14].
  • In Papaver rhoeas, the pollen S gene product is predicted to be a receptor that interacts with the stigmatic S protein in an S specific manner [15].
  • S-protein mutants indicate a functional role for SBP in the self-incompatibility reaction of Papaver rhoeas [15].
  • Self-incompatibility (SI) in Papaver rhoeas triggers a ligand-mediated signal transduction cascade, resulting in the inhibition of incompatible pollen tube growth [16].
  • Molecular analysis of two functional homologues of the S3 allele of the Papaver rhoeas self-incompatibility gene isolated from different populations [17].
 

Analytical, diagnostic and therapeutic context of Papaver

References

  1. Identification of residues in a hydrophilic loop of the Papaver rhoeas S protein that play a crucial role in recognition of incompatible pollen. Kakeda, K., Jordan, N.D., Conner, A., Ride, J.P., Franklin-Tong, V.E., Franklin, F.C. Plant Cell (1998) [Pubmed]
  2. A potential signaling role for profilin in pollen of Papaver rhoeas. Clarke, S.R., Staiger, C.J., Gibbon, B.C., Franklin-Tong, V.E. Plant Cell (1998) [Pubmed]
  3. The roles of latex and the vascular bundle in morphine biosynthesis in the opium poppy, Papaver somniferum. Weid, M., Ziegler, J., Kutchan, T.M. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  4. Differential and tissue-specific expression of a gene family for tyrosine/dopa decarboxylase in opium poppy. Facchini, P.J., De Luca, V. J. Biol. Chem. (1994) [Pubmed]
  5. Transformation of opium poppy (Papaver somniferum L.) with antisense berberine bridge enzyme gene (anti-bbe) via somatic embryogenesis results in an altered ratio of alkaloids in latex but not in roots. Frick, S., Chitty, J.A., Kramell, R., Schmidt, J., Allen, R.S., Larkin, P.J., Kutchan, T.M. Transgenic Res. (2004) [Pubmed]
  6. Toxicity assessment of papaverine hydrochloride and papaverine-derived metabolites in primary cultures of rat hepatocytes. Davila, J.C., Reddy, C.G., Davis, P.J., Acosta, D. In Vitro Cell. Dev. Biol. (1990) [Pubmed]
  7. Duration of cell cycle, onset of S phase and induced mitotic synchronisation in seeds of opium poppy, Papaver somniferum L. Lavania, U.C. Indian J. Exp. Biol. (1996) [Pubmed]
  8. Enzymic conversion of reticuline to salutaridine by cell-free systems from Papaver somniferum. Hodges, C.C., Rapoport, H. Biochemistry (1982) [Pubmed]
  9. Molecular characterization of berberine bridge enzyme genes from opium poppy. Facchini, P.J., Penzes, C., Johnson, A.G., Bull, D. Plant Physiol. (1996) [Pubmed]
  10. (R,S)-Reticuline 7-O-methyltransferase and (R,S)-norcoclaurine 6-O-methyltransferase of Papaver somniferum - cDNA cloning and characterization of methyl transfer enzymes of alkaloid biosynthesis in opium poppy. Ounaroon, A., Decker, G., Schmidt, J., Lottspeich, F., Kutchan, T.M. Plant J. (2003) [Pubmed]
  11. Sanguinarine biosynthesis is associated with the endoplasmic reticulum in cultured opium poppy cells after elicitor treatment. Alcantara, J., Bird, D.A., Franceschi, V.R., Facchini, P.J. Plant Physiol. (2005) [Pubmed]
  12. Virus-induced gene silencing is an effective tool for assaying gene function in the basal eudicot species Papaver somniferum (opium poppy). Hileman, L.C., Drea, S., Martino, G., Litt, A., Irish, V.F. Plant J. (2005) [Pubmed]
  13. Molecular cloning and functional expression of codeinone reductase: the penultimate enzyme in morphine biosynthesis in the opium poppy Papaver somniferum. Unterlinner, B., Lenz, R., Kutchan, T.M. Plant J. (1999) [Pubmed]
  14. Two highly homologous phospholipase D isoenzymes from Papaver somniferum L. with different transphosphatidylation potential. Lerchner, A., Mansfeld, J., Schäffner, I., Schöps, R., Beer, H.K., Ulbrich-Hofmann, R. Biochim. Biophys. Acta (2005) [Pubmed]
  15. S-protein mutants indicate a functional role for SBP in the self-incompatibility reaction of Papaver rhoeas. Jordan, N.D., Kakeda, K., Conner, A., Ride, J.P., Franklin-Tong, V.E., Franklin, F.C. Plant J. (1999) [Pubmed]
  16. Cytomechanical properties of papaver pollen tubes are altered after self-incompatibility challenge. Geitmann, A., McConnaughey, W., Lang-Pauluzzi, I., Franklin-Tong, V.E., Emons, A.M. Biophys. J. (2004) [Pubmed]
  17. Molecular analysis of two functional homologues of the S3 allele of the Papaver rhoeas self-incompatibility gene isolated from different populations. Walker, E.A., Ride, J.P., Kurup, S., Franklin-Tong, V.E., Lawrence, M.J., Franklin, F.C. Plant Mol. Biol. (1996) [Pubmed]
  18. Characterization of proteins in latex of the opium poppy (Papaver somniferum) using two-dimensional gel electrophoresis and microsequencing. Decker, G., Wanner, G., Zenk, M.H., Lottspeich, F. Electrophoresis (2000) [Pubmed]
  19. Changes in glutathione and cellular energy as potential mechanisms of papaverine-induced hepatotoxicity in vitro. Davila, J.C., Davis, P.J., Acosta, D. Toxicol. Appl. Pharmacol. (1991) [Pubmed]
 
WikiGenes - Universities