The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Rosmarinus

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Rosmarinus

  • In order to find new effective HIV protease inhibitors, two diterpenes (carnosic acid [1] and carnosol [5]) were isolated from rosemary (Rosmarinus officinalis L.), and rosmanol [2] and semisynthetic derivatives (7-O-methylrosmanol [3], 7-O-ethylrosmanol [4], and 11,12-O,O-dimethylcarnosol [6]) were prepared [1].
  • The authors found that a rosemary (Rosmarinus officinalis L.) extract enhanced the production of NGF in T98G human glioblastoma cells [2].
 

High impact information on Rosmarinus

  • A methanol extract of the leaves of the plant Rosmarinus officinalis L [3].
  • The potent antioxidant properties of rosemary (Rosmarinus officinalis) extracts have been attributed to its major diterpene, carnosic acid [4].
  • Carnosol, a constant constituent of Rosmarinus officinalis extracts, is a phenolic diterpene shown to have antioxidant and anticarcinogen properties [5].
  • Changes in carotenoids, tocopherols and diterpenes during drought and recovery, and the biological significance of chlorophyll loss in Rosmarinus officinalis plants [6].
  • Practical challenges related to accurate quantification of carnosic acid (CA), carnosol (CAR) and other phenolic diterpenes in extracts of rosemary leaves (Rosmarinus officinalis L.) are presented and discussed [7].
 

Associations of Rosmarinus with chemical compounds

 

Gene context of Rosmarinus

  • As part of a project to characterise plant-derived natural products that modulate bacterial multidrug resistance (MDR), bioassay-guided fractionation of a chloroform extract of the aerial parts of Rosmarinus officinalis led to the characterisation of the known abietane diterpenes carnosic acid (1), carnosol (2) and 12-methoxy-trans-carnosic acid [13].
  • The most bioactive plant tissue was Allium cepa (skin), followed by Illicium religiosum (bark and wood), Fagopyrum esculentum (hull), Origanum officinalis (leaf), Rosmarinus officinalis (leaf), Pyrus pyrifolia (bark),Acanthopanax senticosus (bark), Eugenia caryophllata (leaf), and Erigeron annuus (whole) [14].
  • The increase in bilirubin level and alanine aminotransferase activity in plasma induced by CCl(4) was completely normalized by Rosmarinus officinalis [15].
 

Analytical, diagnostic and therapeutic context of Rosmarinus

References

  1. Inhibitory effect of carnosic acid on HIV-1 protease in cell-free assays [corrected]. Paris, A., Strukelj, B., Renko, M., Turk, V., Pukl, M., Umek, A., Korant, B.D. J. Nat. Prod. (1993) [Pubmed]
  2. Carnosic acid, a component of rosemary (Rosmarinus officinalis L.), promotes synthesis of nerve growth factor in T98G human glioblastoma cells. Kosaka, K., Yokoi, T. Biol. Pharm. Bull. (2003) [Pubmed]
  3. Inhibition of skin tumorigenesis by rosemary and its constituents carnosol and ursolic acid. Huang, M.T., Ho, C.T., Wang, Z.Y., Ferraro, T., Lou, Y.R., Stauber, K., Ma, W., Georgiadis, C., Laskin, J.D., Conney, A.H. Cancer Res. (1994) [Pubmed]
  4. Subcellular compartmentation of the diterpene carnosic acid and its derivatives in the leaves of rosemary. Munné-Bosch, S., Alegre, L. Plant Physiol. (2001) [Pubmed]
  5. Carnosol inhibits the invasion of B16/F10 mouse melanoma cells by suppressing metalloproteinase-9 through down-regulating nuclear factor-kappa B and c-Jun. Huang, S.C., Ho, C.T., Lin-Shiau, S.Y., Lin, J.K. Biochem. Pharmacol. (2005) [Pubmed]
  6. Changes in carotenoids, tocopherols and diterpenes during drought and recovery, and the biological significance of chlorophyll loss in Rosmarinus officinalis plants. Munné-Bosch, S., Alegre, L. Planta (2000) [Pubmed]
  7. Quantitative determination of phenolic diterpenes in rosemary extracts. Aspects of accurate quantification. Thorsen, M.A., Hildebrandt, K.S. Journal of chromatography. A. (2003) [Pubmed]
  8. Response of abietane diterpenes to stress in Rosmarinus officinalis L.: new insights into the function of diterpenes in plants. Munné-Bosch, S., Schwarz, K., Alegre, L. Free Radic. Res. (1999) [Pubmed]
  9. Simple high-performance liquid chromatography method for alpha-tocopherol measurement in Rosmarinus officinalis leaves. New data on alpha-tocopherol content. Torre, J., Lorenzo, M.P., Martínez-Alcázar, M.P., Barbas, C. Journal of chromatography. A. (2001) [Pubmed]
  10. Potential for the use of ultrasound in the extraction of antioxidants from Rosmarinus officinalis for the food and pharmaceutical industry. Albu, S., Joyce, E., Paniwnyk, L., Lorimer, J.P., Mason, T.J. Ultrasonics sonochemistry. (2004) [Pubmed]
  11. Chemical composition and antimicrobial activity of Rosmarinus officinalis L. essential oil obtained via supercritical fluid extraction. Santoyo, S., Cavero, S., Jaime, L., Ibañez, E., Señoráns, F.J., Reglero, G. J. Food Prot. (2005) [Pubmed]
  12. Flavonoid distribution during the development of leaves, flowers, stems, and roots of Rosmarinus officinalis. postulation of a biosynthetic pathway. del Baño, M.J., Lorente, J., Castillo, J., Benavente-García, O., Marín, M.P., Del Río, J.A., Ortuño, A., Ibarra, I. J. Agric. Food Chem. (2004) [Pubmed]
  13. Antibacterial and resistance modifying activity of Rosmarinus officinalis. Oluwatuyi, M., Kaatz, G.W., Gibbons, S. Phytochemistry (2004) [Pubmed]
  14. Protein glycation inhibitory and antioxidative activities of some plant extracts in vitro. Kim, H.Y., Kim, K. J. Agric. Food Chem. (2003) [Pubmed]
  15. Evaluation of the effectiveness of Rosmarinus officinalis (Lamiaceae) in the alleviation of carbon tetrachloride-induced acute hepatotoxicity in the rat. Sotelo-Félix, J.I., Martinez-Fong, D., Muriel, P., Santillán, R.L., Castillo, D., Yahuaca, P. Journal of ethnopharmacology. (2002) [Pubmed]
  16. Hyperglycemic and insulin release inhibitory effects of Rosmarinus officinalis. al-Hader, A.A., Hasan, Z.A., Aqel, M.B. Journal of ethnopharmacology. (1994) [Pubmed]
 
WikiGenes - Universities