The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

abietane     (2S,4aS,4bR,8aS,10aS)-4b,8,8- trimethyl-2...

Synonyms: AC1OAGQ2, CHEBI:35673, 19407-12-6, 13|A-Isopropylpodocarpane
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of abietane

 

High impact information on abietane

  • In the second reaction, diphosphate ester ionization-initiated cyclization generates the tricyclic perhydrophenanthrene-type backbone, and is directly coupled to a 1,2-methyl migration that generates the C13 isopropyl group characteristic of the abietane family of diterpenes [6].
  • From a structure-activity relationship perspective, the new abietane 5 having cyano groups at C-2 and C-13 and a phenolic ring C has been synthesized and evaluated biologically because the related compound 4 has high potency in inflammation models in vitro and in vivo [7].
  • These products were easily converted to abietane-type diterpenes (10-12) and tetracyclic polyprenoid compounds (13, 14) through a Lewis acid-promoted cascade polyene cyclization reaction [8].
  • Regioselective palladium-catalyzed alkylation of allylic halides with benzylic grignard reagents. Two-step synthesis of abietane terpenes and tetracyclic polyprenoid compounds [8].
  • We have cloned and sequenced the dit gene cluster encoding enzymes of the catabolic pathway for abietane diterpenoid degradation by Pseudomonas abietaniphila BKME-9 [9].
 

Chemical compound and disease context of abietane

  • The antimicrobial activities of crude dichloromethane fractions from acetone extracts of Agrobacterium rhizogenes transformed roots and roots of field-grown plants of Salvia sclarea as well as four pure abietane diterpenoids isolated from the hairy root cultures were determined [10].
 

Biological context of abietane

 

Anatomical context of abietane

 

Associations of abietane with other chemical compounds

  • The new diterpenoids, candesalvoquinone, 12- O-methylcandesalvone B, candesalvone B methyl ester with the 3,4-secoabietane skeleton, and candelabroquinone with the abietane skeleton were isolated from the aerial parts of Salvia candelabrum, together with the known compound candelabrone [17].
  • Two new abietane diterpenoids, yunnannin A and danshenol C, were isolated from Salvia yunnanensis together with ten known diterpenoids, danshenol A, przewalskin, tanshinone IIA, tanshinone I, crypotanshinone, 1,2-dihydrotanshinone, tanshinlactone, 5,6-dehydrosugiol, 12-hydroxy-6,7-seco-8,11,3-abietatriene-6,7-dial and phytol [18].
  • Two abietane-type diterpenoids have been isolated from the roots of Plectranthus hereroensis (Labiatae), one being the already known horminone [1] and the other a new substance, 7 alpha,12-dihydroxy-17(15-->16)-abeo-abieta-8,12,16-triene-11 ,14-dione [2], whose structure was established by spectroscopic means [19].
  • As part of a project to characterise plant-derived natural products that modulate bacterial multidrug resistance (MDR), bioassay-guided fractionation of a chloroform extract of the aerial parts of Rosmarinus officinalis led to the characterisation of the known abietane diterpenes carnosic acid (1), carnosol (2) and 12-methoxy-trans-carnosic acid [20].
  • The abietane diterpenoid, neocryptotanshinone II, and the known 6,12-dihydroxyabieta-5,8,11,13-tetraen-7-one were isolated as minor components from the roots of Salvia miltiorrhiza [21].
 

Gene context of abietane

  • Two Novel Abietane Diterpenes from Salvia miltiorrhiza [22].
  • A new sesquiterpene-coumarin ether and a new abietane diterpene and their effects as inhibitors of P-glycoprotein [23].
  • Two novel rearranged abietane-type diterpene acids, karamatsuic acid (1) and larikaempferic acid (2) were isolated as their corresponding methyl esters, 1a and 2a, from the leaves of Larix kaempferi (Lamb.) Carr [24].
  • Antioxidant activities of abietane diterpenoids isolated from Torreya nucifera leaves [25].
  • PTP1B inhibitory effect of abietane diterpenes isolated from Salvia miltiorrhiza [26].
 

Analytical, diagnostic and therapeutic context of abietane

  • An application of HPLC for identification of abietane-type pigments from Salvia miltiorrhiza and their effects on post-hypoxic cardiac contractile force in rats [27].
  • Using bioassay guided isolation, three novel 12 carbon polyoxygenated fatty acids and a novel abietane diterpene have been isolated from the chloroform extract of aerial parts of Aeollanthus buchnerianus (Lamiaceae) [28].

References

  1. A cytochrome P450 involved in the metabolism of abietane diterpenoids by Pseudomonas abietaniphila BKME-9. Smith, D.J., Martin, V.J., Mohn, W.W. J. Bacteriol. (2004) [Pubmed]
  2. Recent advances in understanding resin acid biodegradation: microbial diversity and metabolism. Martin, V.J., Yu, Z., Mohn, W.W. Arch. Microbiol. (1999) [Pubmed]
  3. Abietane diterpenoids from the cones of Larix kaempferi and their inhibitory effects on Epstein-Barr virus activation. Ohtsu, H., Tanak, R., In, Y., Matsunaga, S., Tokuda, H., Nishino, H. Planta Med. (2001) [Pubmed]
  4. Studies on constituents from Chamaecyparis pisifera and antibacterial activity of diterpenes. Xiao, D., Kuroyanagi, M., Itani, T., Matsuura, H., Udayama, M., Murakami, M., Umehara, K., Kawahara, N. Chem. Pharm. Bull. (2001) [Pubmed]
  5. Oxidation, reduction, and methylation of carnosic acid by Nocardia. Hosny, M., Johnson, H.A., Ueltschy, A.K., Rosazza, J.P. J. Nat. Prod. (2002) [Pubmed]
  6. Bifunctional abietadiene synthase: free diffusive transfer of the (+)-copalyl diphosphate intermediate between two distinct active sites. Peters, R.J., Ravn, M.M., Coates, R.M., Croteau, R.B. J. Am. Chem. Soc. (2001) [Pubmed]
  7. Synthesis of a novel dicyano abietane analogue: a potential antiinflammatory agent. Honda, T., Yoshizawa, H., Sundararajan, C., Gribble, G.W. J. Org. Chem. (2006) [Pubmed]
  8. Regioselective palladium-catalyzed alkylation of allylic halides with benzylic grignard reagents. Two-step synthesis of abietane terpenes and tetracyclic polyprenoid compounds. Rosales, V., Zambrano, J.L., Demuth, M. J. Org. Chem. (2002) [Pubmed]
  9. Genetic investigation of the catabolic pathway for degradation of abietane diterpenoids by Pseudomonas abietaniphila BKME-9. Martin, V.J., Mohn, W.W. J. Bacteriol. (2000) [Pubmed]
  10. Antimicrobial activity of diterpenoids from hairy roots of Salvia sclarea L.: Salvipisone as a potential anti-biofilm agent active against antibiotic resistant Staphylococci. Ku??ma, L., R??zalski, M., Walencka, E., R??zalska, B., Wysoki??ska, H. Phytomedicine (2007) [Pubmed]
  11. Response of abietane diterpenes to stress in Rosmarinus officinalis L.: new insights into the function of diterpenes in plants. Munné-Bosch, S., Schwarz, K., Alegre, L. Free Radic. Res. (1999) [Pubmed]
  12. Microbiology and biodegradation of resin acids in pulp mill effluents: a minireview. Liss, S.N., Bicho, P.A., Saddler, J.N. Can. J. Microbiol. (1997) [Pubmed]
  13. Effect of abietane diterpenes from Plectranthus grandidentatus on the growth of human cancer cell lines. Marques, C.G., Pedro, M., Simões, M.F., Nascimento, M.S., Pinto, M.M., Rodríguez, B. Planta Med. (2002) [Pubmed]
  14. Abietane diterpenoids from suspension cultured cells of Torreya nucifera var. radicans. Orihara, Y., Yang, J., Komiya, N., Koge, K., Yoshikawa, T. Phytochemistry (2002) [Pubmed]
  15. Effect of abietane diterpenes from Plectranthus grandidentatus on T- and B-lymphocyte proliferation. Cerqueira, F., Cordeiro-Da-Silva, A., Gaspar-Marques, C., Simões, F., Pinto, M.M., Nascimento, M.S. Bioorg. Med. Chem. (2004) [Pubmed]
  16. Effects of six diterpenes on macrophage eicosanoid biosynthesis. de las Heras, B., Abad, M.J., Silván, A.M., Pascual, R., Bermejo, P., Rodríguez, B., Villar, A.M. Life Sci. (2001) [Pubmed]
  17. New diterpenoids from the aerial parts of Salvia candelabrum. Hohmann, J., Janicsák, G., Forgo, P., Rédei, D., Máthé, I., Bartók, T. Planta Med. (2003) [Pubmed]
  18. Two new abietane diterpenoids from Salvia yunnanensis. Xu, G., Peng, L.Y., Lu, L., Weng, Z.Y., Zhao, Y., Li, X.L., Zhao, Q.S., Sun, H.D. Planta Med. (2006) [Pubmed]
  19. Structure and antimicrobial activity of diterpenes from the roots of Plectranthus hereroensis. Batista, O., Duarte, A., Nascimento, J., Simões, M.F., de la Torre, M.C., Rodríguez, B. J. Nat. Prod. (1994) [Pubmed]
  20. Antibacterial and resistance modifying activity of Rosmarinus officinalis. Oluwatuyi, M., Kaatz, G.W., Gibbons, S. Phytochemistry (2004) [Pubmed]
  21. Diterpenoids from Salvia miltiorrhiza. Lin, H.C., Chang, W.L. Phytochemistry (2000) [Pubmed]
  22. Two Novel Abietane Diterpenes from Salvia miltiorrhiza. Ryu, S.Y., No, Z., Kim, S.H., Ahn, J.W. Planta Med. (1997) [Pubmed]
  23. A new sesquiterpene-coumarin ether and a new abietane diterpene and their effects as inhibitors of P-glycoprotein. Madureira, A.M., Molnár, A., Abreu, P.M., Molnár, J., Ferreira, M.J. Planta Med. (2004) [Pubmed]
  24. Anti-tumor-promoting rearranged abietane diterpenes from the leaves of Larix kaempferi. Ohtsu, H., Tanaka, R., Matsunaga, S., Tokuda, H., Nishino, H. Planta Med. (1999) [Pubmed]
  25. Antioxidant activities of abietane diterpenoids isolated from Torreya nucifera leaves. Lee, W.S., Kim, J.R., Han, J.M., Jang, K.C., Sok, D.E., Jeong, T.S. J. Agric. Food Chem. (2006) [Pubmed]
  26. PTP1B inhibitory effect of abietane diterpenes isolated from Salvia miltiorrhiza. Han, Y.M., Oh, H., Na, M., Kim, B.S., Oh, W.K., Kim, B.Y., Jeong, D.G., Ryu, S.E., Sok, D.E., Ahn, J.S. Biol. Pharm. Bull. (2005) [Pubmed]
  27. An application of HPLC for identification of abietane-type pigments from Salvia miltiorrhiza and their effects on post-hypoxic cardiac contractile force in rats. Okamura, N., Sato, M., Yagi, A., Tanonaka, K., Takeo, S. Planta Med. (1992) [Pubmed]
  28. Unusual antimicrobial compounds from Aeollanthus buchnerianus. Dellar, J.E., Cole, M.D., Waterman, P.G. Experientia (1996) [Pubmed]
 
WikiGenes - Universities