The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Prochlorococcus

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Prochlorococcus

 

High impact information on Prochlorococcus

  • Furthermore, identification of the DVR gene helped understanding the evolution of Prochlorococcus marinus, a marine cyanobacterium that is dominant in the open ocean and is uncommon in using divinyl chlorophylls [5].
  • In contrast, Prochlorococcus sp. MED4, a high-light-adapted ecotype, possesses a single pcb gene [6].
  • The sbtA gene is the first one identified as essential to Na(+)-dependent HCO(3)(-) transport in photosynthetic organisms and may play a crucial role in carbon acquisition when CO(2) supply is limited, or in Prochlorococcus strains that do not possess CO(2) uptake systems or Cmp-dependent HCO(3)(-) transport [7].
  • In the Atlantic, AAP bacterial abundance was as much as 2-fold higher than that of Prochlorococcus spp. and 10-fold higher than that of Synechococcus spp [8].
  • Measurement of Prochlorococcus ecotypes using real-time polymerase chain reaction reveals different abundances of genotypes with similar light physiologies [9].
 

Chemical compound and disease context of Prochlorococcus

 

Biological context of Prochlorococcus

  • Shifting Prochlorococcus cells from low to high irradiance translated quasi-instantaneously into an increase of cells in both the S and G2 phases of the cell cycle and then into faster growth, whereas the inverse shift induced rapid slowing of the population growth rate [14].
  • Phylogenetic analysis of glnA from three Prochlorococcus strains (MED4, MIT9313 and SS120) showed they group closely with marine Synechococcus isolates, in good agreement with other studies based on 16 S RNA sequences [15].
  • In order to study DNA replication control elements in cyanobacteria we cloned and sequenced the dnaA gene from the marine cyanobacterium Prochlorococcus marinus [16].
  • The high-light-adapted Prochlorococcus Med4 has the smallest genome (1.7 Mb), yet it has more than twice as many hli genes as any of the other six cyanobacterial species, some of which appear to have arisen from recent duplication events [17].
 

Gene context of Prochlorococcus

  • Unique organization of the dnaA region from Prochlorococcus marinus CCMP1375, a marine cyanobacterium [16].
  • In the high-light-adapted unicellular marine cyanobacterium Prochlorococcus sp. MED4 the cpeB gene is the only gene coding for a structural phycobiliprotein [11].
  • Expression of the psbA gene in the marine oxyphotobacteria Prochlorococcus spp [12].
  • Rapid evolutionary divergence of Photosystem I core subunits PsaA and PsaB in the marine prokaryote Prochlorococcus [18].
  • Here, an analysis of HL-adapted Prochlorococcus strains from different ocean provinces revealed the presence of a cpeB gene highly similar to that of MED4 [19].

References

  1. Genetic organization of the psbAD region in phages infecting marine Synechococcus strains. Millard, A., Clokie, M.R., Shub, D.A., Mann, N.H. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  2. Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. Ting, C.S., Rocap, G., King, J., Chisholm, S.W. Trends Microbiol. (2002) [Pubmed]
  3. Partial sequence of ribulose-1,5-bisphosphate carboxylase/oxygenase and the phylogeny of Prochloron and Prochlorococcus (Prochlorales). Shimada, A., Kanai, S., Maruyama, T. J. Mol. Evol. (1995) [Pubmed]
  4. CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. Badger, M.R., Price, G.D. J. Exp. Bot. (2003) [Pubmed]
  5. Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Nagata, N., Tanaka, R., Satoh, S., Tanaka, A. Plant Cell (2005) [Pubmed]
  6. Multiplication of antenna genes as a major adaptation to low light in a marine prokaryote. Garczarek, L., Hess, W.R., Holtzendorff, J., van der Staay, G.W., Partensky, F. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  7. Genes essential to sodium-dependent bicarbonate transport in cyanobacteria: function and phylogenetic analysis. Shibata, M., Katoh, H., Sonoda, M., Ohkawa, H., Shimoyama, M., Fukuzawa, H., Kaplan, A., Ogawa, T. J. Biol. Chem. (2002) [Pubmed]
  8. Aerobic anoxygenic phototrophic bacteria in the Mid-Atlantic Bight and the North Pacific Gyre. Cottrell, M.T., Mannino, A., Kirchman, D.L. Appl. Environ. Microbiol. (2006) [Pubmed]
  9. Measurement of Prochlorococcus ecotypes using real-time polymerase chain reaction reveals different abundances of genotypes with similar light physiologies. Ahlgren, N.A., Rocap, G., Chisholm, S.W. Environ. Microbiol. (2006) [Pubmed]
  10. Niche-partitioning of Prochlorococcus populations in a stratified water column in the eastern North Atlantic Ocean. West, N.J., Scanlan, D.J. Appl. Environ. Microbiol. (1999) [Pubmed]
  11. A green light-absorbing phycoerythrin is present in the high-light-adapted marine cyanobacterium Prochlorococcus sp. MED4. Steglich, C., Frankenberg-Dinkel, N., Penno, S., Hess, W.R. Environ. Microbiol. (2005) [Pubmed]
  12. Expression of the psbA gene in the marine oxyphotobacteria Prochlorococcus spp. García-Fernández, J.M., Hess, W.R., Houmard, J., Partensky, F. Arch. Biochem. Biophys. (1998) [Pubmed]
  13. Two-component systems in Prochlorococcus MED4: genomic analysis and differential expression under stress. Mary, I., Vaulot, D. FEMS Microbiol. Lett. (2003) [Pubmed]
  14. Cell cycle regulation by light in Prochlorococcus strains. Jacquet, S., Partensky, F., Marie, D., Casotti, R., Vaulot, D. Appl. Environ. Microbiol. (2001) [Pubmed]
  15. Glutamine synthetase from the marine cyanobacteria Prochlorococcus spp: characterization, phylogeny and response to nutrient limitation. El Alaoui, S., Diez, J., Toribio, F., Gómez-Baena, G., Dufresne, A., García-Fernández, J.M. Environ. Microbiol. (2003) [Pubmed]
  16. Unique organization of the dnaA region from Prochlorococcus marinus CCMP1375, a marine cyanobacterium. Richter, S., Hess, W.R., Krause, M., Messer, W. Mol. Gen. Genet. (1998) [Pubmed]
  17. Analysis of the hli gene family in marine and freshwater cyanobacteria. Bhaya, D., Dufresne, A., Vaulot, D., Grossman, A. FEMS Microbiol. Lett. (2002) [Pubmed]
  18. Rapid evolutionary divergence of Photosystem I core subunits PsaA and PsaB in the marine prokaryote Prochlorococcus. van der Staay, G.W., Moon-van der Staay, S.Y., Garczarek, L., Partensky, F. Photosyn. Res. (2000) [Pubmed]
  19. Analysis of natural populations of Prochlorococcus spp. in the northern Red Sea using phycoerythrin gene sequences. Steglich, C., Post, A.F., Hess, W.R. Environ. Microbiol. (2003) [Pubmed]
 
WikiGenes - Universities