The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Animals, Suckling

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

High impact information on Animals, Suckling

 

Biological context of Animals, Suckling

 

Anatomical context of Animals, Suckling

 

Associations of Animals, Suckling with chemical compounds

  • 4. The results show that the low influx of glucose into the brain of the suckling animal is due to a low maximum rate of transport of glucose rather than to a low affinity of the carrier-molecule for glucose [12].
  • This suggests that the increases in plasma non-esterified fatty acids and liver carnitine seen 2h after birth in the suckling animal are not the predominant factors inducing the switch-on of ketogenesis [13].
  • Inhibition of fatty acid oxidation by pent-4-enoate in the suckling animal mimics the effect of starvation on the pattern of hepatic gluconeogenic metabolites [14].
  • 6. The lower margin of safety in the suckling animals is compensated for by the high influx of the ketone bodies which provide an alternative source of energy at this age [12].
  • In the starved newborn rat, which shows no increase in liver carnitine unless it is fed with a carnitine solution, the developmental pattern of the ketogenic capacity (tested by feeding a triacylglycerol emulsion, which increases plasma non-esterified fatty acids by 3-fold) is the same as in the suckling animal [13].
 

Gene context of Animals, Suckling

 

Analytical, diagnostic and therapeutic context of Animals, Suckling

References

  1. Bile acids regulate the ontogenic expression of ileal bile acid binding protein in the rat via the farnesoid X receptor. Hwang, S.T., Urizar, N.L., Moore, D.D., Henning, S.J. Gastroenterology (2002) [Pubmed]
  2. Regulation of sucrase and lactase in developing rats: role of nuclear factors that bind to two gene regulatory elements. Hecht, A., Torbey, C.F., Korsmo, H.A., Olsen, W.A. Gastroenterology (1997) [Pubmed]
  3. Partial purification of a novel N-ethylmaleimide-activated translational inhibitor from adult rat brain. Alcázar, A., Martín, M.E., García, A., Fando, J.L., Salinas, M. J. Neurochem. (1991) [Pubmed]
  4. Vasoactive intestinal peptide is a physiological mediator of prolactin release in the rat. Abe, H., Engler, D., Molitch, M.E., Bollinger-Gruber, J., Reichlin, S. Endocrinology (1985) [Pubmed]
  5. Competition among oxidizable substrates in brains of young and adult rats. Whole homogenates. Roeder, L.M., Tildon, J.T., Stevenson, J.H. Biochem. J. (1984) [Pubmed]
  6. Intestinal neuraminidase activity of suckling rats and other mammals. Relationship to the sialic acid content of milk. Dickson, J.J., Messer, M. Biochem. J. (1978) [Pubmed]
  7. The postnatal development of sodium transport in the proximal small intestine of the rabbit. Shepherd, R.W., Hamilton, J.R., Gall, D.G. Pediatr. Res. (1980) [Pubmed]
  8. Intestinal glucose metabolism during development. II. The role of glucocorticoids and weaning. Kimura, R.E., Reinersman, G.T. Pediatr. Res. (1985) [Pubmed]
  9. Milk carnitine affects organ carnitine concentration in newborn rats. Flores, C.A., Hu, C., Edmond, J., Koldovsky, O. J. Nutr. (1996) [Pubmed]
  10. Intestinal lactase synthesis during postnatal development in the rat. Jonas, M.M., Montgomery, R.K., Grand, R.J. Pediatr. Res. (1985) [Pubmed]
  11. Diet affects hepatocyte membrane composition, fluidity, and taurocholate transport in suckling rats. Novak, D.A., Carver, J.D., Ananthanarayanan, M., Ray, W. Am. J. Physiol. (1994) [Pubmed]
  12. The effect of age upon the influx of glucose into the brain. Daniel, P.M., Love, E.R., Pratt, O.E. J. Physiol. (Lond.) (1978) [Pubmed]
  13. The development of ketogenesis at birth in the rat. Ferré, P., Pégorier, J.P., Williamson, D.H., Girard, J.R. Biochem. J. (1978) [Pubmed]
  14. Interactions in vivo between oxidation of non-esterified fatty acids and gluconeogenesis in the newborn rat. Ferré, P., Pégorier, J.P., Williamson, D.H., Girard, J. Biochem. J. (1979) [Pubmed]
  15. Expression of rat, renal NHE2 and NHE3 during postnatal development. Collins, J.F., Kiela, P.R., Xu, H., Ghishan, F.K. Biochim. Biophys. Acta (2000) [Pubmed]
  16. Plasma and intestinal concentrations of GIP and GLP-1 (7-36) amide during suckling and after weaning in pigs. Knapper, J.M., Morgan, L.M., Fletcher, J.M., Marks, V. Horm. Metab. Res. (1995) [Pubmed]
  17. Changes in hepatic nitrogen balance in plasma concentrations of amino acids and hormones and in cell volume after overnight fasting in perinatal and adult rat. Blommaart, P.J., Charles, R., Meijer, A.J., Lamers, W.H. Pediatr. Res. (1995) [Pubmed]
  18. Effect of short-term fasting/refeeding on epidermal growth factor content in the gastrointestinal tract of suckling rats. Grimes, J., Schaudies, P., Davis, D., Williams, C., Curry, B.J., Walker, M.D., Koldovský, O. Proc. Soc. Exp. Biol. Med. (1992) [Pubmed]
  19. Effect of externally added carnitine on the synthesis of acetylcholine in rat cerebral cortex cells. Wawrzeńczyk, A., Nałecz, K.A., Nałecz, M.J. Neurochem. Int. (1995) [Pubmed]
  20. Cobalamin release from intrinsic factor and transfer to transcobalamin II within the rat enterocyte. Ramasamy, M., Alpers, D.H., Tiruppathi, C., Seetharam, B. Am. J. Physiol. (1989) [Pubmed]
 
WikiGenes - Universities