The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

New functions for parts of the Krebs cycle in procyclic Trypanosoma brucei, a cycle not operating as a cycle.

We investigated whether substrate availability influences the type of energy metabolism in procyclic Trypanosoma brucei. We show that absence of glycolytic substrates (glucose and glycerol) does not induce a shift from a fermentative metabolism to complete oxidation of substrates. We also show that glucose (and even glycolysis) is not essential for normal functioning and proliferation of pleomorphic procyclic T. brucei cells. Furthermore, absence of glucose did not result in increased degradation of amino acids. Variations in availability of glucose and glycerol did result, however, in adaptations in metabolism in such a way that the glycosome was always in redox balance. We argue that it is likely that, in procyclic cells, phosphoglycerate kinase is located not only in the cytosol, but also inside glycosomes, as otherwise an ATP deficit would occur in this organelle. We demonstrate that procyclic T. brucei uses parts of the Krebs cycle for purposes other than complete degradation of mitochondrial substrates. We suggest that citrate synthase plus pyruvate dehydrogenase and malate dehydrogenase are used to transport acetyl-CoA units from the mitochondrion to the cytosol for the biosynthesis of fatty acids, a process we show to occur in proliferating procyclic cells. The part of the Krebs cycle consisting of alpha-ketoglutarate dehydrogenase and succinyl-CoA synthetase was used for the degradation of proline and glutamate to succinate. We also demonstrate that the subsequent enzymes of the Krebs cycle, succinate dehydrogenase and fumarase, are most likely used for conversion of succinate into malate, which can then be used in gluconeogenesis.[1]

References

  1. New functions for parts of the Krebs cycle in procyclic Trypanosoma brucei, a cycle not operating as a cycle. van Weelden, S.W., van Hellemond, J.J., Opperdoes, F.R., Tielens, A.G. J. Biol. Chem. (2005) [Pubmed]
 
WikiGenes - Universities