The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Antibacterial activity of BMS-180680, a new catechol-containing monobactam.

The in vitro activities of a new catechol-containing monobactam, BMS-180680 (SQ 84,100), were compared to those of aztreonam, ceftazidime, imipenem, piperacillin-tazobactam, ciprofloxacin, amikacin, and trimethoprim-sulfamethoxazole. BMS-180680 was often the most active compound against many species of the family Enterobacteriaceae, with MICs at which 90% of the isolates were inhibited (MIC90s) of < or = 0.5 microg/ml for Escherichia coli, Klebsiella spp., Citrobacter diversus, Enterobacter aerogenes, Serratia marcescens, Proteus spp., and Providencia spp. BMS-180680 had moderate activities (MIC90s of 2 to 8 microg/ml) against Citrobacter freundii, Morganella morganii, Shigella spp., and non-E. aerogenes Enterobacter spp. BMS-180680 was the only antibiotic evaluated that was active against >90% of the Pseudomonas aeruginosa (MIC90, 0.25 microg/ml), Burkholderia cepacia, and Stenotrophomonas maltophilia (MIC90s, 1 microg/ml) strains tested. BMS-180680 was inactive against most strains of Pseudomonas fluorescens, Pseudomonas stutzeri, Pseudomonas diminuta, and Burkholderia pickettii. BMS-180680 was moderately active (MIC90s of 4 to 8 microg/ml) against Alcaligenes spp. and Acinetobacter lwoffii and less active (MIC90, 16 microg/ml) against Acinetobacter calcoaceticus-Acinetobacter baumanii complex. BMS-180680 lacked activity against gram-positive bacteria and anaerobic bacteria. Both tonB and cir fiu double mutants of E. coli had greatly decreased susceptibility to BMS-180680. Of the TEM, PSE, and chromosomal-encoded beta-lactamases tested, only the K1 enzyme hydrolyzed BMS-180680 to any measurable extent. Like aztreonam, BMS-180680 bound preferentially to penicillin-binding protein 3. The MICs of BMS-180680 were not influenced by the presence of hematin or 5% sheep blood in the test medium or with incubation in an atmosphere containing 5% CO2. BMS-180680 MICs obtained under strict anaerobic conditions were significantly higher than those obtained in ambient air.[1]

References

  1. Antibacterial activity of BMS-180680, a new catechol-containing monobactam. Fung-Tomc, J., Bush, K., Minassian, B., Kolek, B., Flamm, R., Gradelski, E., Bonner, D. Antimicrob. Agents Chemother. (1997) [Pubmed]
 
WikiGenes - Universities