The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Burkholderia

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Burkholderia

 

High impact information on Burkholderia

  • Salicylate induces an antibiotic efflux pump in Burkholderia cepacia complex genomovar III (B. cenocepacia) [6].
  • Burkholderia cepacia and nebulized albuterol [7].
  • The distribution of aqueous Pb(II) sorbed at the interface between Burkholderia cepacia biofilms and hematite (alpha-Fe(2)O(3)) or corundum (alpha-Al(2)O(3)) surfaces has been probed by using an application of the long-period x-ray standing wave technique [8].
  • The purified protein catalyzed the NADPH-dependent reduction of the carbon-carbon double bond of 2-chloroacrylate to produce (S)-2-chloropropionate, which is probably further metabolized to (R)-lactate by (S)-2-haloacid dehalogenase in Burkholderia sp. WS. NADH did not serve as a reductant [9].
  • 2,2'-Dichlorobiphenyl (CB) is transformed by the biphenyl dioxygenase of Burkholderia xenovorans LB400 (LB400 BPDO) into two metabolites (1 and 2) [10].
 

Chemical compound and disease context of Burkholderia

 

Biological context of Burkholderia

 

Anatomical context of Burkholderia

 

Gene context of Burkholderia

 

Analytical, diagnostic and therapeutic context of Burkholderia

References

  1. Differential binding of mannose-binding lectin to respiratory pathogens in cystic fibrosis. Davies, J., Neth, O., Alton, E., Klein, N., Turner, M. Lancet (2000) [Pubmed]
  2. Catalase-peroxidases (KatG) exhibit NADH oxidase activity. Singh, R., Wiseman, B., Deemagarn, T., Donald, L.J., Duckworth, H.W., Carpena, X., Fita, I., Loewen, P.C. J. Biol. Chem. (2004) [Pubmed]
  3. X-ray crystallographic analysis of 6-aminohexanoate-dimer hydrolase: molecular basis for the birth of a nylon oligomer-degrading enzyme. Negoro, S., Ohki, T., Shibata, N., Mizuno, N., Wakitani, Y., Tsurukame, J., Matsumoto, K., Kawamoto, I., Takeo, M., Higuchi, Y. J. Biol. Chem. (2005) [Pubmed]
  4. A novel class of self-sufficient cytochrome P450 monooxygenases in prokaryotes. De Mot, R., Parret, A.H. Trends Microbiol. (2002) [Pubmed]
  5. Epidemiology of Burkholderia cepacia complex in patients with cystic fibrosis, Canada. Speert, D.P., Henry, D., Vandamme, P., Corey, M., Mahenthiralingam, E. Emerging Infect. Dis. (2002) [Pubmed]
  6. Salicylate induces an antibiotic efflux pump in Burkholderia cepacia complex genomovar III (B. cenocepacia). Nair, B.M., Cheung, K.J., Griffith, A., Burns, J.L. J. Clin. Invest. (2004) [Pubmed]
  7. Burkholderia cepacia and nebulized albuterol. Scharer, L. Ann. Intern. Med. (1996) [Pubmed]
  8. Pb(II) distributions at biofilm-metal oxide interfaces. Templeton, A.S., Trainor, T.P., Traina, S.J., Spormann, A.M., Brown, G.E. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  9. 2-Haloacrylate reductase, a novel enzyme of the medium chain dehydrogenase/reductase superfamily that catalyzes the reduction of a carbon-carbon double bond of unsaturated organohalogen compounds. Kurata, A., Kurihara, T., Kamachi, H., Esaki, N. J. Biol. Chem. (2005) [Pubmed]
  10. Revisiting the regiospecificity of Burkholderia xenovorans LB400 biphenyl dioxygenase toward 2,2'-dichlorobiphenyl and 2,3,2',3'-tetrachlorobiphenyl. Barriault, D., Lépine, F., Mohammadi, M., Milot, S., Leberre, N., Sylvestre, M. J. Biol. Chem. (2004) [Pubmed]
  11. Identification, characterization, and cloning of a phosphonate monoester hydrolase from Burkholderia caryophilli PG2982. Dotson, S.B., Smith, C.E., Ling, C.S., Barry, G.F., Kishore, G.M. J. Biol. Chem. (1996) [Pubmed]
  12. Identification of a serine hydrolase as a key determinant in the microbial degradation of polychlorinated biphenyls. Seah, S.Y., Labbé, G., Nerdinger, S., Johnson, M.R., Snieckus, V., Eltis, L.D. J. Biol. Chem. (2000) [Pubmed]
  13. Quorum sensing and the LysR-type transcriptional activator ToxR regulate toxoflavin biosynthesis and transport in Burkholderia glumae. Kim, J., Kim, J.G., Kang, Y., Jang, J.Y., Jog, G.J., Lim, J.Y., Kim, S., Suga, H., Nagamatsu, T., Hwang, I. Mol. Microbiol. (2004) [Pubmed]
  14. Evolution of the biphenyl dioxygenase BphA from Burkholderia xenovorans LB400 by random mutagenesis of multiple sites in region III. Barriault, D., Sylvestre, M. J. Biol. Chem. (2004) [Pubmed]
  15. Crystal structure at high resolution of ferric-pyochelin and its membrane receptor FptA from Pseudomonas aeruginosa. Cobessi, D., Celia, H., Pattus, F. J. Mol. Biol. (2005) [Pubmed]
  16. CpG-modified plasmid DNA encoding flagellin improves immunogenicity and provides protection against Burkholderia pseudomallei infection in BALB/c mice. Chen, Y.S., Hsiao, Y.S., Lin, H.H., Liu, Y., Chen, Y.L. Infect. Immun. (2006) [Pubmed]
  17. Assignment of the 1H, 13C and 15N resonances of the catalytic domain of guanine nucleotide exchange factor BopE from Burkholderia pseudomallei. Wu, H.L., Williams, C., Upadhyay, A., Galyov, E.E., Bagby, S. J. Biomol. NMR (2004) [Pubmed]
  18. A type IV pilin, PilA, Contributes To Adherence of Burkholderia pseudomallei and virulence in vivo. Essex-Lopresti, A.E., Boddey, J.A., Thomas, R., Smith, M.P., Hartley, M.G., Atkins, T., Brown, N.F., Tsang, C.H., Peak, I.R., Hill, J., Beacham, I.R., Titball, R.W. Infect. Immun. (2005) [Pubmed]
  19. Comparative in vitro activities of meropenem, imipenem, temocillin, piperacillin, and ceftazidime in combination with tobramycin, rifampin, or ciprofloxacin against Burkholderia cepacia isolates from patients with cystic fibrosis. Bonacorsi, S., Fitoussi, F., Lhopital, S., Bingen, E. Antimicrob. Agents Chemother. (1999) [Pubmed]
  20. Cable-piliated Burkholderia cepacia binds to cytokeratin 13 of epithelial cells. Sajjan, U.S., Sylvester, F.A., Forstner, J.F. Infect. Immun. (2000) [Pubmed]
  21. Lipopolysaccharide of Burkholderia cepacia and its unique character to stimulate murine macrophages with relative lack of interleukin-1beta-inducing ability. Shimomura, H., Matsuura, M., Saito, S., Hirai, Y., Isshiki, Y., Kawahara, K. Infect. Immun. (2001) [Pubmed]
  22. Phagocyte NADPH oxidase, but not inducible nitric oxide synthase, is essential for early control of Burkholderia cepacia and chromobacterium violaceum infection in mice. Segal, B.H., Ding, L., Holland, S.M. Infect. Immun. (2003) [Pubmed]
  23. Bacterial contamination of commercially available ethacridine lactate (acrinol) products. Oie, S., Kamiya, A. J. Hosp. Infect. (1996) [Pubmed]
  24. Activity of abundant antimicrobials of the human airway. Travis, S.M., Conway, B.A., Zabner, J., Smith, J.J., Anderson, N.N., Singh, P.K., Greenberg, E.P., Welsh, M.J. Am. J. Respir. Cell Mol. Biol. (1999) [Pubmed]
  25. Caspase-1 dependent macrophage death induced by Burkholderia pseudomallei. Sun, G.W., Lu, J., Pervaiz, S., Cao, W.P., Gan, Y.H. Cell. Microbiol. (2005) [Pubmed]
  26. Actin-based motility of Burkholderia pseudomallei involves the Arp 2/3 complex, but not N-WASP and Ena/VASP proteins. Breitbach, K., Rottner, K., Klocke, S., Rohde, M., Jenzora, A., Wehland, J., Steinmetz, I. Cell. Microbiol. (2003) [Pubmed]
  27. Identification of the 2-methylcitrate pathway involved in the catabolism of propionate in the polyhydroxyalkanoate-producing strain Burkholderia sacchari IPT101(T) and analysis of a mutant accumulating a copolyester with higher 3-hydroxyvalerate content. Brämer, C.O., Silva, L.F., Gomez, J.G., Priefert, H., Steinbüchel, A. Appl. Environ. Microbiol. (2002) [Pubmed]
  28. HrpXv, an AraC-type regulator, activates expression of five of the six loci in the hrp cluster of Xanthomonas campestris pv. vesicatoria. Wengelnik, K., Bonas, U. J. Bacteriol. (1996) [Pubmed]
  29. Infection with Burkholderia cepacia in cystic fibrosis: outcome following lung transplantation. Chaparro, C., Maurer, J., Gutierrez, C., Krajden, M., Chan, C., Winton, T., Keshavjee, S., Scavuzzo, M., Tullis, E., Hutcheon, M., Kesten, S. Am. J. Respir. Crit. Care Med. (2001) [Pubmed]
  30. Development of a 5'-nuclease real-time PCR assay targeting fliP for the rapid identification of Burkholderia mallei in clinical samples. Tomaso, H., Scholz, H.C., Al Dahouk, S., Eickhoff, M., Treu, T.M., Wernery, R., Wernery, U., Neubauer, H. Clin. Chem. (2006) [Pubmed]
  31. Cell-associated glucans of Burkholderia solanacearum and Xanthomonas campestris pv. citri: a new family of periplasmic glucans. Talaga, P., Stahl, B., Wieruszeski, J.M., Hillenkamp, F., Tsuyumu, S., Lippens, G., Bohin, J.P. J. Bacteriol. (1996) [Pubmed]
  32. Home-use nebulizers: a potential primary source of Burkholderia cepacia and other colistin-resistant, gram-negative bacteria in patients with cystic fibrosis. Hutchinson, G.R., Parker, S., Pryor, J.A., Duncan-Skingle, F., Hoffman, P.N., Hodson, M.E., Kaufmann, M.E., Pitt, T.L. J. Clin. Microbiol. (1996) [Pubmed]
  33. Development and characterization of a lux-modified 2,4-dichlorophenol-degrading Burkholderia sp. RASC. Shaw, L.J., Beaton, Y., Glover, L.A., Killham, K., Meharg, A.A. Environ. Microbiol. (1999) [Pubmed]
 
WikiGenes - Universities