The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

AG-E-89516     2-[[4-[(2-amino-4-oxo- 5,6,7,8-tetrahydro...

Synonyms: AC1Q5SFA, CTK4G0609, AR-1J8787, AC1L189V, 10-CHO-THF, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of C00234

 

High impact information on C00234

 

Biological context of C00234

 

Anatomical context of C00234

 

Associations of C00234 with other chemical compounds

 

Gene context of C00234

  • We have studied yeast mutants carrying chromosomal disruptions of the genes encoding the mitochondrial C(1)-tetrahydrofolate (C(1)-THF) synthase (MIS1), necessary for synthesis of 10-formyl-THF, and the methionyl-tRNA formyltransferase (open reading frame YBL013W; designated FMT1) [19].
  • In eucaryotes, 10-formyltetrahydrofolate (formyl-THF) synthetase, 5,10-methenyl-THF cyclohydrolase, and NADP(+)-dependent 5,10-methylene-THF dehydrogenase activities are present on a single polypeptide termed C1-THF synthase [20].
  • The amino-terminal domain of FDH shares some sequence identity with several other enzymes utilizing 10-formyl-THF as a substrate [21].
  • Disruption of the mthfd1 gene reveals a monofunctional 10-formyltetrahydrofolate synthetase in mammalian mitochondria [22].
  • These results suggest that unlike the trifunctional form of C1-tetrahydrofolate synthase in the other eukaryotes examined, 10-formyltetrahydrofolate synthetase in spinach leaves is monofunctional and 5,10-methyl-enetetrahydrofolate dehydrogenase and 5,10-methenyltetrahydrofolate cyclohydrolase appear to be bifunctional [23].
 

Analytical, diagnostic and therapeutic context of C00234

References

  1. Identification of a heritable deficiency of the folate-dependent enzyme 10-formyltetrahydrofolate dehydrogenase in mice. Champion, K.M., Cook, R.J., Tollaksen, S.L., Giometti, C.S. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  2. A complex of N5,N10-methylenetetrahydrofolate dehydrogenase and N5,N10-methenyltetrahydrofolate cyclohydrolase in Escherichia coli. Purification, subunit structure, and allosteric inhibition by N10-formyltetrahydrofolate. Dev, I.K., Harvey, R.J. J. Biol. Chem. (1978) [Pubmed]
  3. Sequence and expression of the gene for N10-formyltetrahydrofolate synthetase from Clostridium cylindrosporum. Rankin, C.A., Haslam, G.C., Himes, R.H. Protein Sci. (1993) [Pubmed]
  4. The hydrogenase gene cluster of Rhizobium leguminosarum bv. viciae contains an additional gene (hypX), which encodes a protein with sequence similarity to the N10-formyltetrahydrofolate-dependent enzyme family and is required for nickel-dependent hydrogenase processing and activity. Rey, L., Fernández, D., Brito, B., Hernando, Y., Palacios, J.M., Imperial, J., Ruiz-Argüeso, T. Mol. Gen. Genet. (1996) [Pubmed]
  5. Immunological crossreactivity of eukaryotic C1-tetrahydrofolate synthase and prokaryotic 10-formyltetrahydrofolate synthetase. Staben, C., Rabinowitz, J.C. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
  6. Mitochondrial NAD-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase is essential for embryonic development. Di Pietro, E., Sirois, J., Tremblay, M.L., MacKenzie, R.E. Mol. Cell. Biol. (2002) [Pubmed]
  7. Characterization of mammalian phosphoribosylglycineamide formyltransferase from transformed cells. Daubner, S.C., Benkovic, S.J. Cancer Res. (1985) [Pubmed]
  8. C1-Tetrahydrofolate synthase from rabbit liver. Structural and kinetic properties of the enzyme and its two domains. Villar, E., Schuster, B., Peterson, D., Schirch, V. J. Biol. Chem. (1985) [Pubmed]
  9. Serine hydroxymethyltransferase catalyzes the hydrolysis of 5,10-methenyltetrahydrofolate to 5-formyltetrahydrofolate. Stover, P., Schirch, V. J. Biol. Chem. (1990) [Pubmed]
  10. Isolation and characterization of the Saccharomyces cerevisiae MIS1 gene encoding mitochondrial C1-tetrahydrofolate synthase. Shannon, K.W., Rabinowitz, J.C. J. Biol. Chem. (1988) [Pubmed]
  11. Nucleotide sequence of the Clostridium acidiurici ("Clostridium acidi-urici") gene for 10-formyltetrahydrofolate synthetase shows extensive amino acid homology with the trifunctional enzyme C1-tetrahydrofolate synthase from Saccharomyces cerevisiae. Whitehead, T.R., Rabinowitz, J.C. J. Bacteriol. (1988) [Pubmed]
  12. Compartmentation of folate metabolism in rat pancreas: nitrous oxide inactivation of methionine synthase leads to accumulation of 5-methyltetrahydrofolate in cytosol. Horne, D.W., Holloway, R.S. J. Nutr. (1997) [Pubmed]
  13. Crystallization and preliminary X-ray diffraction analysis of recombinant hydrolase domain of 10-formyltetrahydrofolate dehydrogenase. Chumanevich, A.A., Davies, C., Krupenko, S.A. Acta Crystallogr. D Biol. Crystallogr. (2002) [Pubmed]
  14. Metabolism of 10-formyldihydrofolate in humans. Baggott, J.E., Tamura, T. Biomed. Pharmacother. (2001) [Pubmed]
  15. Resolution of rat liver 10-formyltetrahydrofolate dehydrogenase/hydrolase activities. Case, G.L., Kaisaki, P.J., Steele, R.D. J. Biol. Chem. (1988) [Pubmed]
  16. Identification and biochemical properties of 10-formyldihydrofolate, a novel folate found in methotrexate-treated cells. Baram, J., Chabner, B.A., Drake, J.C., Fitzhugh, A.L., Sholar, P.W., Allegra, C.J. J. Biol. Chem. (1988) [Pubmed]
  17. Oxidation of 10-formyltetrahydrofolate to 10-formyldihydrofolate by complex IV of rat mitochondria. Brookes, P.S., Baggott, J.E. Biochemistry (2002) [Pubmed]
  18. Inhibitory effects of histidine and their reversal. The roles of pyruvate carboxylase and N10-formyltetrahydrofolate dehydrogenase. Scrutton, M.C., Beis, I. Biochem. J. (1979) [Pubmed]
  19. Initiation of protein synthesis in Saccharomyces cerevisiae mitochondria without formylation of the initiator tRNA. Li, Y., Holmes, W.B., Appling, D.R., RajBhandary, U.L. J. Bacteriol. (2000) [Pubmed]
  20. Molecular genetic analysis of Saccharomyces cerevisiae C1-tetrahydrofolate synthase mutants reveals a noncatalytic function of the ADE3 gene product and an additional folate-dependent enzyme. Barlowe, C.K., Appling, D.R. Mol. Cell. Biol. (1990) [Pubmed]
  21. On the role of conserved histidine 106 in 10-formyltetrahydrofolate dehydrogenase catalysis: connection between hydrolase and dehydrogenase mechanisms. Krupenko, S.A., Vlasov, A.P., Wagner, C. J. Biol. Chem. (2001) [Pubmed]
  22. Disruption of the mthfd1 gene reveals a monofunctional 10-formyltetrahydrofolate synthetase in mammalian mitochondria. Christensen, K.E., Patel, H., Kuzmanov, U., Mejia, N.R., MacKenzie, R.E. J. Biol. Chem. (2005) [Pubmed]
  23. Isolation, characterization, and structural organization of 10-formyltetrahydrofolate synthetase from spinach leaves. Nour, J.M., Rabinowitz, J.C. J. Biol. Chem. (1991) [Pubmed]
  24. Purification, crystallization, and preliminary X-ray studies of 10-formyltetrahydrofolate synthetase from Clostridia acidici-urici. D'Ari, L., Cheung, E., Rabinowitz, J.C., Bolduc, J.M., Huang, J.Y., Stoddard, B.L. Proteins (1997) [Pubmed]
  25. Site-directed mutagenesis of a highly conserved aspartate in the putative 10-formyl-tetrahydrofolate binding site of yeast C1-tetrahydrofolate synthase. Kirksey, T.J., Appling, D.R. Arch. Biochem. Biophys. (1996) [Pubmed]
 
WikiGenes - Universities