The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

DiMeNQ     2,3-dimethoxynaphthalene-1,4- dione

Synonyms: dmnq, Lopac-D-5439, CHEMBL402468, SureCN571557, AG-J-23558, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Lopac-D-5439

  • As conflicting results emerged from several studies showing either decreased or increased ROS production during hypoxia, we used experiments mimicking hypoxic intracellular ROS changes by using the redox cycling agent 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), which generates superoxide inside cells [1].
  • To focus upon the action of extracellular GSH in preventing H2O2-mediated toxicity, we used 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), which cannot conjugate with GSH but does continuously generate H2O2 through redox cycling [2].
  • Exposure of hepatoma 1c1c7 cells to 2,3-dimethoxy-1,4-naphthoquinone (DMNQ) resulted in a sustained elevation of cytosolic Ca2+, DNA single strand breaks and cell killing [3].
 

High impact information on Lopac-D-5439

 

Chemical compound and disease context of Lopac-D-5439

 

Biological context of Lopac-D-5439

 

Anatomical context of Lopac-D-5439

 

Associations of Lopac-D-5439 with other chemical compounds

 

Gene context of Lopac-D-5439

References

  1. Reactive oxygen species attenuate nitric-oxide-mediated hypoxia-inducible factor-1alpha stabilization. Köhl, R., Zhou, J., Brüne, B. Free Radic. Biol. Med. (2006) [Pubmed]
  2. Extracellular glutathione and gamma-glutamyl transpeptidase prevent H2O2-induced injury by 2,3-dimethoxy-1,4-naphthoquinone. Shi, M., Gozal, E., Choy, H.A., Forman, H.J. Free Radic. Biol. Med. (1993) [Pubmed]
  3. Intracellular Ca2+ chelators prevent DNA damage and protect hepatoma 1C1C7 cells from quinone-induced cell killing. Dypbukt, J.M., Thor, H., Nicotera, P. Free Radic. Res. Commun. (1990) [Pubmed]
  4. Oxidative stress promotes polarization of human T cell differentiation toward a T helper 2 phenotype. King, M.R., Ismail, A.S., Davis, L.S., Karp, D.R. J. Immunol. (2006) [Pubmed]
  5. Superoxide attenuates macrophage apoptosis by NF-kappa B and AP-1 activation that promotes cyclooxygenase-2 expression. von Knethen, A., Callsen, D., Brüne, B. J. Immunol. (1999) [Pubmed]
  6. Accessibility of SSA/Ro and SSB/La antigens to maternal autoantibodies in apoptotic human fetal cardiac myocytes. Miranda, M.E., Tseng, C.E., Rashbaum, W., Ochs, R.L., Casiano, C.A., Di Donato, F., Chan, E.K., Buyon, J.P. J. Immunol. (1998) [Pubmed]
  7. Quinone-induced oxidative stress elevates glutathione and induces gamma-glutamylcysteine synthetase activity in rat lung epithelial L2 cells. Shi, M.M., Kugelman, A., Iwamoto, T., Tian, L., Forman, H.J. J. Biol. Chem. (1994) [Pubmed]
  8. NO restores HIF-1alpha hydroxylation during hypoxia: role of reactive oxygen species. Callapina, M., Zhou, J., Schmid, T., Köhl, R., Brüne, B. Free Radic. Biol. Med. (2005) [Pubmed]
  9. Effect of oxidative stress on the junctional proteins of cultured cerebral endothelial cells. Krizbai, I.A., Bauer, H., Bresgen, N., Eckl, P.M., Farkas, A., Szatmári, E., Traweger, A., Wejksza, K., Bauer, H.C. Cell. Mol. Neurobiol. (2005) [Pubmed]
  10. Nitric oxide and superoxide inhibit platelet-derived growth factor receptor phosphotyrosine phosphatases. Callsen, D., Sandau, K.B., Brüne, B. Free Radic. Biol. Med. (1999) [Pubmed]
  11. Increased transcription of the regulatory subunit of gamma-glutamylcysteine synthetase in rat lung epithelial L2 cells exposed to oxidative stress or glutathione depletion. Tian, L., Shi, M.M., Forman, H.J. Arch. Biochem. Biophys. (1997) [Pubmed]
  12. Orthovanadate and 2,3-dimethoxy-1,4-naphthoquinone augment growth factor-induced cell proliferation and c-fos gene expression in 3T3-L1 cells. Chen, Y., Chan, T.M. Arch. Biochem. Biophys. (1993) [Pubmed]
  13. Pyridine nucleotide hydrolysis and interconversion in rat hepatocytes during oxidative stress. Morgan, W.A. Biochem. Pharmacol. (1995) [Pubmed]
  14. p38mapk and MEK1/2 inhibition contribute to cellular oxidant injury after hypoxia. Powell, C.S., Wright, M.M., Jackson, R.M. Am. J. Physiol. Lung Cell Mol. Physiol. (2004) [Pubmed]
  15. Activation of c-Jun N-terminal kinase and apoptosis in endothelial cells mediated by endogenous generation of hydrogen peroxide. Ramachandran, A., Moellering, D., Go, Y.M., Shiva, S., Levonen, A.L., Jo, H., Patel, R.P., Parthasarathy, S., Darley-Usmar, V.M. Biol. Chem. (2002) [Pubmed]
  16. Variable regulation of glutamate cysteine ligase subunit proteins affects glutathione biosynthesis in response to oxidative stress. Krzywanski, D.M., Dickinson, D.A., Iles, K.E., Wigley, A.F., Franklin, C.C., Liu, R.M., Kavanagh, T.J., Forman, H.J. Arch. Biochem. Biophys. (2004) [Pubmed]
  17. gamma-Glutamylcysteine synthetase and GSH increase in quinone-induced oxidative stress in BPAEC. Shi, M.M., Iwamoto, T., Forman, H.J. Am. J. Physiol. (1994) [Pubmed]
  18. Angiotensin II stimulates matrix metalloproteinase secretion in human vascular smooth muscle cells via nuclear factor-kappaB and activator protein 1 in a redox-sensitive manner. Browatzki, M., Larsen, D., Pfeiffer, C.A., Gehrke, S.G., Schmidt, J., Kranzhofer, A., Katus, H.A., Kranzhofer, R. J. Vasc. Res. (2005) [Pubmed]
 
WikiGenes - Universities