The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Vicasol     2-methylnaphthalene-1,4-dione

Synonyms: Aquinone, Kaergona, Kappaxan, menadione, Vitamin K3, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of menadione

 

Psychiatry related information on menadione

 

High impact information on menadione

  • Bcl-2 protected cells from H2O2- and menadione-induced oxidative deaths [6].
  • We demonstrate that transcription of the Saccharomyces cerevisiae MT gene CUP1 is strongly activated by the superoxide anion generator menadione [7].
  • Growth in menadione reconstituted Deltapsi of JB-1 to a level equivalent to 6850, and was associated with greater depolarization due to PMP-2, but not tPMP-1 [8].
  • Treatment with the oxidizing agents H2O2 and menadione produced an increase in gamma-glutamyl transpeptidase activity in LNCaP cells, whereas treatment with the antioxidant compound ascorbic acid (100 mM) reduced the oxidative stress produced in LNCaP cells by 1 nM R1881 and completely blocked the gamma-glutamyl transpeptidase activity [9].
  • The mechanism involves inactivation of PGH2 synthase by a reactive species resulting from metabolism of menadione by endothelial cells [10].
 

Chemical compound and disease context of menadione

 

Biological context of menadione

 

Anatomical context of menadione

 

Associations of menadione with other chemical compounds

 

Gene context of menadione

  • Targeted gene disruption of NTG1 produces a mutant that is sensitive to H2O2 and menadione, indicating that NTG1 is required for repair of oxidative DNA damage in vivo [27].
  • Mutants lacking Grx5 are partially deficient in growth in rich and minimal media and also highly sensitive to oxidative damage caused by menadione and hydrogen peroxide [28].
  • We have found that yeast cells simultaneously lacking Ntg1p, Ntg2p, and Apn1p are hyperrecombinogenic (hyper-rec) and exhibit a mutator phenotype but are not sensitive to the oxidizing agents H2O2 and menadione [29].
  • CYP2E1-overexpressing cells were resistant to menadione toxicity through an ERK1/2-dependent mechanism [30].
  • Inhibition of EGFR signaling reversed CYP2E1-induced resistance to menadione and sensitization to AA toxicity [30].
 

Analytical, diagnostic and therapeutic context of menadione

References

  1. Menadione metabolism to thiodione in hepatoblastoma by scanning electrochemical microscopy. Mauzeroll, J., Bard, A.J., Owhadian, O., Monks, T.J. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  2. Mitochondrial encephalomyopathy and complex III deficiency associated with a stop-codon mutation in the cytochrome b gene. Keightley, J.A., Anitori, R., Burton, M.D., Quan, F., Buist, N.R., Kennaway, N.G. Am. J. Hum. Genet. (2000) [Pubmed]
  3. Excess release of ferriheme in G6PD-deficient erythrocytes: possible cause of hemolysis and resistance to malaria. Janney, S.K., Joist, J.J., Fitch, C.D. Blood (1986) [Pubmed]
  4. Metabolism of bioreductive antitumor compounds by purified rat and human DT-diaphorases. Beall, H.D., Mulcahy, R.T., Siegel, D., Traver, R.D., Gibson, N.W., Ross, D. Cancer Res. (1994) [Pubmed]
  5. Cellular defense mechanisms against toxic substances. Jones, T.W., Thor, H., Orrenius, S. Arch. Toxicol. Suppl. (1986) [Pubmed]
  6. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Hockenbery, D.M., Oltvai, Z.N., Yin, X.M., Milliman, C.L., Korsmeyer, S.J. Cell (1993) [Pubmed]
  7. Oxidative stress induced heat shock factor phosphorylation and HSF-dependent activation of yeast metallothionein gene transcription. Liu, X.D., Thiele, D.J. Genes Dev. (1996) [Pubmed]
  8. Platelet microbicidal proteins and neutrophil defensin disrupt the Staphylococcus aureus cytoplasmic membrane by distinct mechanisms of action. Yeaman, M.R., Bayer, A.S., Koo, S.P., Foss, W., Sullam, P.M. J. Clin. Invest. (1998) [Pubmed]
  9. Prooxidant-antioxidant shift induced by androgen treatment of human prostate carcinoma cells. Ripple, M.O., Henry, W.F., Rago, R.P., Wilding, G. J. Natl. Cancer Inst. (1997) [Pubmed]
  10. Inhibition of prostaglandin synthesis after metabolism of menadione by cultured porcine endothelial cells. Barchowsky, A., Tabrizi, K., Kent, R.S., Whorton, A.R. J. Clin. Invest. (1989) [Pubmed]
  11. Gene expression after treatment with hydrogen peroxide, menadione, or t-butyl hydroperoxide in breast cancer cells. Chuang, Y.Y., Chen, Y., Gadisetti, n.u.l.l., Chandramouli, V.R., Cook, J.A., Coffin, D., Tsai, M.H., DeGraff, W., Yan, H., Zhao, S., Russo, A., Liu, E.T., Mitchell, J.B. Cancer Res. (2002) [Pubmed]
  12. Modulation of cytotoxicity of menadione sodium bisulfite versus leukemia L1210 by the acid-soluble thiol pool. Akman, S.A., Dietrich, M., Chlebowski, R., Limberg, P., Block, J.B. Cancer Res. (1985) [Pubmed]
  13. Regulation of cardiotrophin-1 expression in mouse embryonic stem cells by HIF-1alpha and intracellular reactive oxygen species. Ateghang, B., Wartenberg, M., Gassmann, M., Sauer, H. J. Cell. Sci. (2006) [Pubmed]
  14. Ethanol potentiates oxygen uptake and toxicity due to menadione bisulfite in perfused rat liver. Ganey, P.E., Takei, Y., Kauffman, F.C., Thurman, R.G. Mol. Pharmacol. (1990) [Pubmed]
  15. Effects of menadione and hydrogen peroxide on glutathione status in growing Escherichia coli. Smirnova, G.V., Muzyka, N.G., Glukhovchenko, M.N., Oktyabrsky, O.N. Free Radic. Biol. Med. (2000) [Pubmed]
  16. Prevention by menadione of the hepatotoxic effects in chickens fed rapeseed meal. Observations on coagulation factors and cytochrome P-450. Israels, E.D., Papas, A., Campbell, L.D., Israels, L.G. Gastroenterology (1979) [Pubmed]
  17. Endogenous oxidative damage of deoxycytidine in DNA. Wagner, J.R., Hu, C.C., Ames, B.N. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  18. The reaper-binding protein scythe modulates apoptosis and proliferation during mammalian development. Desmots, F., Russell, H.R., Lee, Y., Boyd, K., McKinnon, P.J. Mol. Cell. Biol. (2005) [Pubmed]
  19. Exogenous glutathione protects intestinal epithelial cells from oxidative injury. Lash, L.H., Hagen, T.M., Jones, D.P. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  20. Intracellular ferriprotoporphyrin IX is a lytic agent. Fitch, C.D., Chevli, R., Kanjananggulpan, P., Dutta, P., Chevli, K., Chou, A.C. Blood (1983) [Pubmed]
  21. Alteration of Na+ homeostasis as a critical step in the development of irreversible hepatocyte injury after adenosine triphosphate depletion. Carini, R., Bellomo, G., Benedetti, A., Fulceri, R., Gamberucci, A., Parola, M., Dianzani, M.U., Albano, E. Hepatology (1995) [Pubmed]
  22. Altered oxidative stress responses in nickel-resistant mammalian cells. Salnikow, K., Gao, M., Voitkun, V., Huang, X., Costa, M. Cancer Res. (1994) [Pubmed]
  23. Oxygen radicals induce human endothelial cells to express GMP-140 and bind neutrophils. Patel, K.D., Zimmerman, G.A., Prescott, S.M., McEver, R.P., McIntyre, T.M. J. Cell Biol. (1991) [Pubmed]
  24. sigmaR, an RNA polymerase sigma factor that modulates expression of the thioredoxin system in response to oxidative stress in Streptomyces coelicolor A3(2). Paget, M.S., Kang, J.G., Roe, J.H., Buttner, M.J. EMBO J. (1998) [Pubmed]
  25. Detection and characterization of the product of hydroethidine and intracellular superoxide by HPLC and limitations of fluorescence. Zhao, H., Joseph, J., Fales, H.M., Sokoloski, E.A., Levine, R.L., Vasquez-Vivar, J., Kalyanaraman, B. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  26. Modifying specific cysteines of the electrophile-sensing human Keap1 protein is insufficient to disrupt binding to the Nrf2 domain Neh2. Eggler, A.L., Liu, G., Pezzuto, J.M., van Breemen, R.B., Mesecar, A.D. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  27. Base excision of oxidative purine and pyrimidine DNA damage in Saccharomyces cerevisiae by a DNA glycosylase with sequence similarity to endonuclease III from Escherichia coli. Eide, L., Bjørås, M., Pirovano, M., Alseth, I., Berdal, K.G., Seeberg, E. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  28. Grx5 glutaredoxin plays a central role in protection against protein oxidative damage in Saccharomyces cerevisiae. Rodríguez-Manzaneque, M.T., Ros, J., Cabiscol, E., Sorribas, A., Herrero, E. Mol. Cell. Biol. (1999) [Pubmed]
  29. Overlapping specificities of base excision repair, nucleotide excision repair, recombination, and translesion synthesis pathways for DNA base damage in Saccharomyces cerevisiae. Swanson, R.L., Morey, N.J., Doetsch, P.W., Jinks-Robertson, S. Mol. Cell. Biol. (1999) [Pubmed]
  30. CYP2E1 overexpression alters hepatocyte death from menadione and fatty acids by activation of ERK1/2 signaling. Schattenberg, J.M., Wang, Y., Rigoli, R.M., Koop, D.R., Czaja, M.J. Hepatology (2004) [Pubmed]
  31. The pancreatitis-associated protein is induced by free radicals in AR4-2J cells and confers cell resistance to apoptosis. Ortiz, E.M., Dusetti, N.J., Vasseur, S., Malka, D., Bödeker, H., Dagorn, J.C., Iovanna, J.L. Gastroenterology (1998) [Pubmed]
  32. 2-Methyl-1,4-naphthoquinone, vitamin K(3), decreases gap-junctional intercellular communication via activation of the epidermal growth factor receptor/extracellular signal-regulated kinase cascade. Klotz, L.O., Patak, P., Ale-Agha, N., Buchczyk, D.P., Abdelmohsen, K., Gerber, P.A., von Montfort, C., Sies, H. Cancer Res. (2002) [Pubmed]
  33. Role of oxygen radicals in 12-O-tetradecanoylphorbol-13-acetate-induced squamous differentiation of cultured normal human bronchial epithelial cells. Gabrielson, E.W., Rosen, G.M., Grafstrom, R.C., Strauss, K.E., Miyashita, M., Harris, C.C. Cancer Res. (1988) [Pubmed]
  34. Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. Cabiscol, E., Piulats, E., Echave, P., Herrero, E., Ros, J. J. Biol. Chem. (2000) [Pubmed]
  35. Menadione-induced Reactive Oxygen Species Generation via Redox Cycling Promotes Apoptosis of Murine Pancreatic Acinar Cells. Criddle, D.N., Gillies, S., Baumgartner-Wilson, H.K., Jaffar, M., Chinje, E.C., Passmore, S., Chvanov, M., Barrow, S., Gerasimenko, O.V., Tepikin, A.V., Sutton, R., Petersen, O.H. J. Biol. Chem. (2006) [Pubmed]
 
WikiGenes - Universities