The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

SureCN135941     2-phenyl-4H-1,3-oxazol-5-one

Synonyms: CHEBI:60296, ANW-63250, NSC-79500, NSC79500, AK-87865, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Phenyloxazolone

  • This gene is probably responsible for the differences that have been observed earlier in delayed hypersensitivity and antibody responses to skin painting by phOx [1].
  • The rearranged VH genes were cloned with a human V lambda 3 light chain as single chain Fv fragments for phage display, and the library of phage panned by binding to each of two haptens, 2-phenyl-5-oxazolone (phOx) or 3-iodo-4-hydroxy-5-nitrophenyl-acetate (NIP) coupled to bovine serum albumin (BSA) [2].
  • Phage displaying a human antibody fragment recognising the hapten 2-phenyl-5-oxazolone were grown in a mutator strain of bacteria (Escherichia coli: mutD5) to generate a large repertoire of antibodies that should include the majority of possible single nucleotide point mutations [3].
 

High impact information on Phenyloxazolone

 

Biological context of Phenyloxazolone

 

Anatomical context of Phenyloxazolone

 

Gene context of Phenyloxazolone

  • Starting from the monoclonal antibodies NQ11.7.22 (NQ11) and D1.3 directed against the hapten phenyloxazolone and hen egg lysozyme, respectively, we built bivalent fragments (VHNQ11-VLNQ11)2 and (VHD1.3-VLD1.3)2 and bispecific fragments VHNQ11-VLD1.3 and VHD1.3-VLNQ11 [17].
  • Fab fragments of IgG1 and IgG3 subclass antibodies which bind to 2-phenyloxazolone (Ox) were produced in Escherichia coli [18].
  • Thyroglobulin and the hapten 2-phenyl-5-oxazolone coupled to chicken serum albumin were used as antigens [19].
  • As examples of scFv fragments we have used a murine scFv specific for the hapten 2-phenyloxazolone and a human scFv specific for carcinoembryonic antigen [20].
  • The phOx response is initially dominated by antibodies expressing the VkOx1-Jk5 light chain and the hallmark of the early stages of maturation is the substitution of His 34 by Asn or Gln increasing affinity 10- or eightfold, respectively, and of Tyr 36 by Phe [21].
 

Analytical, diagnostic and therapeutic context of Phenyloxazolone

  • This technique (Res-PCR) allows analysis of the immune response, in this case to phenyloxazolone, in several different tissues and enables molecular cloning and sequencing of the VH genes involved in vivo [22].
  • Use of 2D NMR, protein engineering, and molecular modeling to study the hapten-binding site of an antibody Fv fragment against 2-phenyloxazolone [23].
  • To demonstrate the principle, two Fab phage stocks displaying antibodies specific for hen egg lysozyme or phenyloxazolone were mixed in a ratio of 1:10 and injected over the biosensor chip containing immobilized lysozyme [24].

References

  1. A hapten-specific Ir gene. Pelkonen, J.L., Kaartinen, M., Karjalainen, K., Mäkelä, O. J. Immunol. (1979) [Pubmed]
  2. By-passing immunisation. Human antibodies from synthetic repertoires of germline VH gene segments rearranged in vitro. Hoogenboom, H.R., Winter, G. J. Mol. Biol. (1992) [Pubmed]
  3. Mimicking somatic hypermutation: affinity maturation of antibodies displayed on bacteriophage using a bacterial mutator strain. Low, N.M., Holliger, P.H., Winter, G. J. Mol. Biol. (1996) [Pubmed]
  4. Maturation of the immune response in germinal centers. Berek, C., Berger, A., Apel, M. Cell (1991) [Pubmed]
  5. Affinity maturation leads to differential expression of multiple copies of a kappa light-chain transgene. Lozano, F., Rada, C., Jarvis, J.M., Milstein, C. Nature (1993) [Pubmed]
  6. Kinetic maturation of an immune response. Foote, J., Milstein, C. Nature (1991) [Pubmed]
  7. Mismatch repair deficiency interferes with the accumulation of mutations in chronically stimulated B cells and not with the hypermutation process. Frey, S., Bertocci, B., Delbos, F., Quint, L., Weill, J.C., Reynaud, C.A. Immunity (1998) [Pubmed]
  8. Inheritance of antibody specificity V. Anti-2-phenyloxazolone in the mouse. Näkelä, O., Kaartinen, M., Pelkonen, J.L., Karjalainen, K. J. Exp. Med. (1978) [Pubmed]
  9. 'Allelic' forms of immunoglobulin V genes in different strains of mice. Kaartinen, M., Solin, M.L., Mäkelä, O. EMBO J. (1989) [Pubmed]
  10. Nucleotide sequences of five anti-lysozyme monoclonal antibodies. Darsley, M.J., Rees, A.R. EMBO J. (1985) [Pubmed]
  11. No-carrier-added regioselective preparation of 6-[18F]fluoro-L-dopa. Lemaire, C., Guillaume, M., Cantineau, R., Christiaens, L. J. Nucl. Med. (1990) [Pubmed]
  12. Uniform labeling of a recombinant antibody Fv-fragment with 15N and 13C for heteronuclear NMR spectroscopy. Riechmann, L., Cavanagh, J., McManus, S. FEBS Lett. (1991) [Pubmed]
  13. Light chain germ-line genes and the immune response to 2-phenyloxazolone. Even, J., Griffiths, G.M., Berek, C., Milstein, C. EMBO J. (1985) [Pubmed]
  14. Somatic hypermutation of immunoglobulin kappa may depend on sequences 3' of C kappa and occurs on passenger transgenes. Sharpe, M.J., Milstein, C., Jarvis, J.M., Neuberger, M.S. EMBO J. (1991) [Pubmed]
  15. Sequences of variable regions of hybridoma antibodies to alpha (1----6) dextran in BALB/c and C57BL/6 mice. Sikder, S.K., Akolkar, P.N., Kaladas, P.M., Morrison, S.L., Kabat, E.A. J. Immunol. (1985) [Pubmed]
  16. Kinetics of somatic mutation in lymph node germinal centres. Källberg, E., Gray, D., Leanderson, T. Scand. J. Immunol. (1994) [Pubmed]
  17. "Diabodies": small bivalent and bispecific antibody fragments. Holliger, P., Prospero, T., Winter, G. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  18. Efficient secretion of murine Fab fragments by Escherichia coli is determined by the first constant domain of the heavy chain. Alfthan, K., Takkinen, K., Sizmann, D., Seppälä, I., Immonen, T., Vanne, L., Keränen, S., Kaartinen, M., Knowles, J.K., Teeri, T.T. Gene (1993) [Pubmed]
  19. Optimal conditions for the generation of monoclonal antibodies using primary immunisation of mouse splenocytes in vitro under serum-free conditions. De Boer, M., Ossendorp, F.A., Van Duijn, G., Ten Voorde, G.H., Tager, J.M. J. Immunol. Methods (1989) [Pubmed]
  20. Baculoviral display of functional scFv and synthetic IgG-binding domains. Mottershead, D.G., Alfthan, K., Ojala, K., Takkinen, K., Oker-Blom, C. Biochem. Biophys. Res. Commun. (2000) [Pubmed]
  21. Low antigen dose favours selection of somatic mutants with hallmarks of antibody affinity maturation. González-Fernández, A., Milstein, C. Immunology (1998) [Pubmed]
  22. Restriction-PCR fingerprinting of the immunoglobulin VH repertoire: direct detection of an immune response and global analysis of B cell clonality. White, H.N. Eur. J. Immunol. (1998) [Pubmed]
  23. Use of 2D NMR, protein engineering, and molecular modeling to study the hapten-binding site of an antibody Fv fragment against 2-phenyloxazolone. McManus, S., Riechmann, L. Biochemistry (1991) [Pubmed]
  24. Selection of binders from phage displayed antibody libraries using the BIAcore biosensor. Malmborg, A.C., Dueñas, M., Ohlin, M., Söderlind, E., Borrebaeck, C.A. J. Immunol. Methods (1996) [Pubmed]
 
WikiGenes - Universities