The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Germinal Center

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Germinal Center

 

High impact information on Germinal Center

 

Chemical compound and disease context of Germinal Center

 

Biological context of Germinal Center

 

Anatomical context of Germinal Center

 

Associations of Germinal Center with chemical compounds

 

Gene context of Germinal Center

 

Analytical, diagnostic and therapeutic context of Germinal Center

References

  1. The AIDS disease of CD4C/HIV transgenic mice shows impaired germinal centers and autoantibodies and develops in the absence of IFN-gamma and IL-6. Poudrier, J., Weng, X., Kay, D.G., Paré, G., Calvo, E.L., Hanna, Z., Kosco-Vilbois, M.H., Jolicoeur, P. Immunity (2001) [Pubmed]
  2. BCL6 interacts with the transcription factor Miz-1 to suppress the cyclin-dependent kinase inhibitor p21 and cell cycle arrest in germinal center B cells. Phan, R.T., Saito, M., Basso, K., Niu, H., Dalla-Favera, R. Nat. Immunol. (2005) [Pubmed]
  3. CD19 has a potential CD77 (globotriaosyl ceramide)-binding site with sequence similarity to verotoxin B-subunits: implications of molecular mimicry for B cell adhesion and enterohemorrhagic Escherichia coli pathogenesis. Maloney, M.D., Lingwood, C.A. J. Exp. Med. (1994) [Pubmed]
  4. Tumor necrosis factor sustains the generalized lymphoproliferative disorder (gld) phenotype. Körner, H., Cretney, E., Wilhelm, P., Kelly, J.M., Röllinghoff, M., Sedgwick, J.D., Smyth, M.J. J. Exp. Med. (2000) [Pubmed]
  5. Abnormal germinal center reactions in systemic lupus erythematosus demonstrated by blockade of CD154-CD40 interactions. Grammer, A.C., Slota, R., Fischer, R., Gur, H., Girschick, H., Yarboro, C., Illei, G.G., Lipsky, P.E. J. Clin. Invest. (2003) [Pubmed]
  6. MTA3 and the Mi-2/NuRD complex regulate cell fate during B lymphocyte differentiation. Fujita, N., Jaye, D.L., Geigerman, C., Akyildiz, A., Mooney, M.R., Boss, J.M., Wade, P.A. Cell (2004) [Pubmed]
  7. Maturation of the immune response in germinal centers. Berek, C., Berger, A., Apel, M. Cell (1991) [Pubmed]
  8. Dependence of germinal center B cells on expression of CD21/CD35 for survival. Fischer, M.B., Goerg, S., Shen, L., Prodeus, A.P., Goodnow, C.C., Kelsoe, G., Carroll, M.C. Science (1998) [Pubmed]
  9. Neoteny in lymphocytes: Rag1 and Rag2 expression in germinal center B cells. Han, S., Zheng, B., Schatz, D.G., Spanopoulou, E., Kelsoe, G. Science (1996) [Pubmed]
  10. Characterization of tumor necrosis factor-deficient mice. Marino, M.W., Dunn, A., Grail, D., Inglese, M., Noguchi, Y., Richards, E., Jungbluth, A., Wada, H., Moore, M., Williamson, B., Basu, S., Old, L.J. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  11. Local synthesis of C3 within the splenic lymphoid compartment can reconstitute the impaired immune response in C3-deficient mice. Fischer, M.B., Ma, M., Hsu, N.C., Carroll, M.C. J. Immunol. (1998) [Pubmed]
  12. Expression pattern of adaptor protein PAG: correlation between secondary lymphatic follicle and histogenetically related malignant lymphomas. Svec, A., Velenská, Z., Horejsí, V. Immunol. Lett. (2005) [Pubmed]
  13. BCoR, a novel corepressor involved in BCL-6 repression. Huynh, K.D., Fischle, W., Verdin, E., Bardwell, V.J. Genes Dev. (2000) [Pubmed]
  14. Expression of the Bcl-3 proto-oncogene suppresses p53 activation. Kashatus, D., Cogswell, P., Baldwin, A.S. Genes Dev. (2006) [Pubmed]
  15. The physiologic role of CD19 cytoplasmic tyrosines. Wang, Y., Brooks, S.R., Li, X., Anzelon, A.N., Rickert, R.C., Carter, R.H. Immunity (2002) [Pubmed]
  16. B7-1 and B7-2 have overlapping, critical roles in immunoglobulin class switching and germinal center formation. Borriello, F., Sethna, M.P., Boyd, S.D., Schweitzer, A.N., Tivol, E.A., Jacoby, D., Strom, T.B., Simpson, E.M., Freeman, G.J., Sharpe, A.H. Immunity (1997) [Pubmed]
  17. FLICE-inhibitory protein is a key regulator of germinal center B cell apoptosis. Hennino, A., Bérard, M., Krammer, P.H., Defrance, T. J. Exp. Med. (2001) [Pubmed]
  18. Immunological defects in mice with a targeted disruption in Bcl-3. Schwarz, E.M., Krimpenfort, P., Berns, A., Verma, I.M. Genes Dev. (1997) [Pubmed]
  19. Distinct roles in lymphoid organogenesis for lymphotoxins alpha and beta revealed in lymphotoxin beta-deficient mice. Koni, P.A., Sacca, R., Lawton, P., Browning, J.L., Ruddle, N.H., Flavell, R.A. Immunity (1997) [Pubmed]
  20. C4b-binding protein (C4BP) activates B cells through the CD40 receptor. Brodeur, S.R., Angelini, F., Bacharier, L.B., Blom, A.M., Mizoguchi, E., Fujiwara, H., Plebani, A., Notarangelo, L.D., Dahlback, B., Tsitsikov, E., Geha, R.S. Immunity (2003) [Pubmed]
  21. Expression of the cytoplasmic tail of LMP1 in mice induces hyperactivation of B lymphocytes and disordered lymphoid architecture. Stunz, L.L., Busch, L.K., Munroe, M.E., Sigmund, C.D., Tygrett, L.T., Waldschmidt, T.J., Bishop, G.A. Immunity (2004) [Pubmed]
  22. Arrest of B lymphocyte terminal differentiation by CD40 signaling: mechanism for lack of antibody-secreting cells in germinal centers. Randall, T.D., Heath, A.W., Santos-Argumedo, L., Howard, M.C., Weissman, I.L., Lund, F.E. Immunity (1998) [Pubmed]
  23. Role of lymphotoxin and the type I TNF receptor in the formation of germinal centers. Matsumoto, M., Mariathasan, S., Nahm, M.H., Baranyay, F., Peschon, J.J., Chaplin, D.D. Science (1996) [Pubmed]
  24. Life and death in germinal centers (redux). Kelsoe, G. Immunity (1996) [Pubmed]
  25. HPK1 is activated by lymphocyte antigen receptors and negatively regulates AP-1. Liou, J., Kiefer, F., Dang, A., Hashimoto, A., Cobb, M.H., Kurosaki, T., Weiss, A. Immunity (2000) [Pubmed]
  26. Interleukin 6 influences germinal center development and antibody production via a contribution of C3 complement component. Kopf, M., Herren, S., Wiles, M.V., Pepys, M.B., Kosco-Vilbois, M.H. J. Exp. Med. (1998) [Pubmed]
  27. Thymus and breast cancer--plasma androgens, thymic pathology, and peripheral lymphocytes in myasthenia gravis. Papatestas, A.E., Mulvihill, M., Genkins, G., Kornfeld, P., Aufses, A.H., Wang, D.Y., Bulbrook, R.D. J. Natl. Cancer Inst. (1977) [Pubmed]
  28. The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Kawabe, T., Naka, T., Yoshida, K., Tanaka, T., Fujiwara, H., Suematsu, S., Yoshida, N., Kishimoto, T., Kikutani, H. Immunity (1994) [Pubmed]
  29. Memory B cells without somatic hypermutation are generated from Bcl6-deficient B cells. Toyama, H., Okada, S., Hatano, M., Takahashi, Y., Takeda, N., Ichii, H., Takemori, T., Kuroda, Y., Tokuhisa, T. Immunity (2002) [Pubmed]
  30. Mechanism of SMRT corepressor recruitment by the BCL6 BTB domain. Ahmad, K.F., Melnick, A., Lax, S., Bouchard, D., Liu, J., Kiang, C.L., Mayer, S., Takahashi, S., Licht, J.D., Privé, G.G. Mol. Cell (2003) [Pubmed]
  31. Differentiation of follicular dendritic cells and full antibody responses require tumor necrosis factor receptor-1 signaling. Le Hir, M., Bluethmann, H., Kosco-Vilbois, M.H., Müller, M., di Padova, F., Moore, M., Ryffel, B., Eugster, H.P. J. Exp. Med. (1996) [Pubmed]
  32. In vivo-activated CD4 T cells upregulate CXC chemokine receptor 5 and reprogram their response to lymphoid chemokines. Ansel, K.M., McHeyzer-Williams, L.J., Ngo, V.N., McHeyzer-Williams, M.G., Cyster, J.G. J. Exp. Med. (1999) [Pubmed]
  33. Involvement of multiple signaling pathways in follicular lymphoma transformation: p38-mitogen-activated protein kinase as a target for therapy. Elenitoba-Johnson, K.S., Jenson, S.D., Abbott, R.T., Palais, R.A., Bohling, S.D., Lin, Z., Tripp, S., Shami, P.J., Wang, L.Y., Coupland, R.W., Buckstein, R., Perez-Ordonez, B., Perkins, S.L., Dube, I.D., Lim, M.S. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  34. Memory, but not naive, peripheral blood B lymphocytes differentiate into Ig-secreting cells after CD40 ligation and costimulation with IL-4 and the differentiation factors IL-2, IL-10, and IL-3. Kindler, V., Zubler, R.H. J. Immunol. (1997) [Pubmed]
  35. The xid mutation diminishes memory B cell generation but does not affect somatic hypermutation and selection. Ridderstad, A., Nossal, G.J., Tarlinton, D.M. J. Immunol. (1996) [Pubmed]
  36. Cutting edge: double-stranded DNA breaks in the IgV region gene were detected at lower frequency in affinity-maturation impeded GANP-/- mice. Kawatani, Y., Igarashi, H., Matsui, T., Kuwahara, K., Fujimura, S., Okamoto, N., Takagi, K., Sakaguchi, N. J. Immunol. (2005) [Pubmed]
 
WikiGenes - Universities