The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

MXD1  -  MAX dimerization protein 1

Homo sapiens

Synonyms: BHLHC58, MAD, MAD1, Max dimerization protein 1, Max dimerizer 1, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of MXD1

  • Our results indicate that the SID is necessary and sufficient for transcriptional repression mediated by the Mad protein family and that SID repression is dominant over several distinct transcriptional activators [1].
  • The effect of Mad protein to the malignant phenotype of human hepatoma BEL-7404 cell line was investigated experimentally [2].
  • To perturb the activity of c-Myc, which is involved in the progression of melanoma, we overexpressed Mad1 protein with liposomal-mediated transfection of cytomegalovirus promoter-driven expression vector containing the human Mad1 gene, pcMad-1 [3].
  • Expression of Mad1 protein inhibits proliferation of cancer cells and inversely correlated with Myc protein expression in primary gastric cancer [4].
  • TGFbeta1-Smad (transforming growth factor-beta1-Sma and Mad protein) signalling plays an important role in the development of renal tubulo-interstitial fibrosis [5].
 

High impact information on MXD1

 

Biological context of MXD1

  • Analysis of specific mutants indicates that transcriptional activation requires both the c-Myc and the Max dimerization and DNA-binding domains, as well as the c-Myc transactivation function; transcriptional repression by Max requires both DNA binding and dimerization [10].
  • This growth inhibition was associated with transient increased expression of Mad1 concomitant with transient downregulation of c-Myc [11].
  • Although levels of mad1 mRNA were moderately increased after induction with phorbol ester, we also found that differentiation could be achieved with other inducers without any concomitant up-regulation of mad1 mRNA [12].
  • It was also found that Mad protein overexpression could greatly suppress p53-mediated apoptosis in BEL-7404-M1 cells in the absence of serume [2].
  • This DNA damage response is absent in mad1 spindle checkpoint mutants [13].
 

Anatomical context of MXD1

 

Associations of MXD1 with chemical compounds

 

Other interactions of MXD1

  • With the established protocol, we have measured on- and off-rates of c-Myc/Max, Max/Max, and Mad1/Max complexes and determined relative affinities [21].
 

Analytical, diagnostic and therapeutic context of MXD1

References

  1. Mad proteins contain a dominant transcription repression domain. Ayer, D.E., Laherty, C.D., Lawrence, Q.A., Armstrong, A.P., Eisenman, R.N. Mol. Cell. Biol. (1996) [Pubmed]
  2. Mad-overexpression down regulates the malignant growth and p53 mediated apoptosis in human hepatocellular carcinoma BEL-7404 cells. Zhao, H., Xu, Y.H. Cell Res. (1999) [Pubmed]
  3. Effect of the transcriptional repressor Mad1 on proliferation of human melanoma cells. Ohta, Y., Hamada, Y., Saitoh, N., Katsuoka, K. Exp. Dermatol. (2002) [Pubmed]
  4. Expression of Mad1 protein inhibits proliferation of cancer cells and inversely correlated with Myc protein expression in primary gastric cancer. Han, S., Park, K., Kim, H.Y., Lee, M.S., Kim, H.J., Kim, Y.D. Oncol. Rep. (1999) [Pubmed]
  5. The differential role of Smad2 and Smad3 in the regulation of pro-fibrotic TGFbeta1 responses in human proximal-tubule epithelial cells. Phanish, M.K., Wahab, N.A., Colville-Nash, P., Hendry, B.M., Dockrell, M.E. Biochem. J. (2006) [Pubmed]
  6. MAD1 and c-MYC regulate UBF and rDNA transcription during granulocyte differentiation. Poortinga, G., Hannan, K.M., Snelling, H., Walkley, C.R., Jenkins, A., Sharkey, K., Wall, M., Brandenburger, Y., Palatsides, M., Pearson, R.B., McArthur, G.A., Hannan, R.D. EMBO J. (2004) [Pubmed]
  7. Targeted disruption of the MYC antagonist MAD1 inhibits cell cycle exit during granulocyte differentiation. Foley, K.P., McArthur, G.A., Quéva, C., Hurlin, P.J., Soriano, P., Eisenman, R.N. EMBO J. (1998) [Pubmed]
  8. Small-molecule antagonists of Myc/Max dimerization inhibit Myc-induced transformation of chicken embryo fibroblasts. Berg, T., Cohen, S.B., Desharnais, J., Sonderegger, C., Maslyar, D.J., Goldberg, J., Boger, D.L., Vogt, P.K. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  9. Switch from Myc/Max to Mad1/Max binding and decrease in histone acetylation at the telomerase reverse transcriptase promoter during differentiation of HL60 cells. Xu, D., Popov, N., Hou, M., Wang, Q., Björkholm, M., Gruber, A., Menkel, A.R., Henriksson, M. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  10. Opposite regulation of gene transcription and cell proliferation by c-Myc and Max. Gu, W., Cechova, K., Tassi, V., Dalla-Favera, R. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  11. Mad1 expression in the absence of differentiation: effect of cAMP on the B-lymphoid cell line Reh. Naderi, S., Blomhoff, H.K. J. Cell. Physiol. (1999) [Pubmed]
  12. Analysis of E-box DNA binding during myeloid differentiation reveals complexes that contain Mad but not Max. Ryan, K.M., Birnie, G.D. Biochem. J. (1997) [Pubmed]
  13. Loss of Sin3/Rpd3 histone deacetylase restores the DNA damage response in checkpoint-deficient strains of Saccharomyces cerevisiae. Scott, K.L., Plon, S.E. Mol. Cell. Biol. (2003) [Pubmed]
  14. The Mad1 transcription factor is a novel target of activin and TGF-beta action in keratinocytes: possible role of Mad1 in wound repair and psoriasis. Werner, S., Beer, H.D., Mauch, C., Lüscher, B., Werner, S. Oncogene (2001) [Pubmed]
  15. Contrasting localization of c-Myc with other Myc superfamily transcription factors in the human hair follicle and during the hair growth cycle. Bull, J.J., Müller-Röver, S., Patel, S.V., Chronnell, C.M., McKay, I.A., Philpott, M.P. J. Invest. Dermatol. (2001) [Pubmed]
  16. Novel expression patterns of the myc/max/mad transcription factor network in developing murine prostate gland. Luo, Q., Harmon, E., Timms, B.G., Kretzner, L. J. Urol. (2001) [Pubmed]
  17. Co-induction of Mad1 and c-Myc in activated normal B lymphocytes. Ertesvåg, A., Blomhoff, H.K., Beiske, K., Naderi, S. Scand. J. Immunol. (2000) [Pubmed]
  18. Histone deacetylation is involved in the transcriptional repression of hTERT in normal human cells. Cong, Y.S., Bacchetti, S. J. Biol. Chem. (2000) [Pubmed]
  19. Toward the elucidation of the structural determinants responsible for the molecular recognition between Mad1 and Max. Montagne, M., Naud, J.F., McDuff, F.O., Lavigne, P. Biochemistry (2005) [Pubmed]
  20. Enhancing the antiproliferative effect of topoisomerase II inhibitors using a polypeptide inhibitor of c-Myc. Bidwell, G.L., Raucher, D. Biochem. Pharmacol. (2006) [Pubmed]
  21. Identification and characterization of specific DNA-binding complexes containing members of the Myc/Max/Mad network of transcriptional regulators. Sommer, A., Bousset, K., Kremmer, E., Austen, M., Lüscher, B. J. Biol. Chem. (1998) [Pubmed]
  22. Inhibition of proliferation and apoptosis by the transcriptional repressor Mad1. Repression of Fas-induced caspase-8 activation. Gehring, S., Rottmann, S., Menkel, A.R., Mertsching, J., Krippner-Heidenreich, A., Lüscher, B. J. Biol. Chem. (2000) [Pubmed]
  23. Silencing of the Epstein-Barr virus latent membrane protein 1 gene by the Max-Mad1-mSin3A modulator of chromatin structure. Sjöblom-Hallén, A., Yang, W., Jansson, A., Rymo, L. J. Virol. (1999) [Pubmed]
 
WikiGenes - Universities